ratio test اختبار النسبة

في هذا الموضوع سنلقي نظرة على اختبار لمعرفة فيما أذا كانت متسلسلة ما مطلقة التقارب أم لا . نحن نعرف انه أذا كانت المتسلسلة مطلقة التقارب فأنها تكون متقاربة لذا سيخبرنا هذا الاختبار فيما أذا كانت المتسلسلة متقاربة أم لا.

$ratio\ test$ اختبار النسبة $\sum a_n$ لتكن

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

فان

أذا كان L < 1 فان المتسلسلة مطلقة التقارب و بالتالى ستكون متقاربة.

. أذا كان L>1 فان المتسلسلة متباعدة.

L=1 فان المتسلسلة قد تكون متباعدة أو مشروطة التقارب أو مطلقة التقارب (لذا نستخدم اختبار أخر في هذه الحالة) .

مثال. بين أيا من المتسلسلات الآتية متقاربة أو متباعدة.

a.
$$\sum_{n=1}^{\infty} \frac{(-10)^n}{4^{2n+1}(n+1)}$$

لاحظ أن

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-10)^{n+1}}{4^{2n+3}(n+2)} \frac{4^{2n+1}(n+1)}{(-10)^n} \right| = \lim_{n \to \infty} \frac{-10(n+1)}{4^2(n+2)}$$
$$= \frac{10}{16} \lim_{n \to \infty} \frac{n+1}{n+2} = \frac{10}{16} < 1$$

بما أن L < 1 لذا حسب اختبار النسبة سنحصل على ان المتسلسلة اعلاه متقاربة.

$$b. \sum_{n=0}^{\infty} \frac{n!}{5^n}$$

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{5^{n+1}} \frac{5^n}{n!} \right| = \lim_{n \to \infty} \frac{(n+1)n!}{5^n!} = \infty > 1$$

بما أن L>1 لذا حسب اختبار النسبة سنحصل على ان المتسلسلة اعلاه متباعدة.

$$c. \sum_{n=2}^{\infty} \frac{n^2}{(2n-1)!}$$

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2}{(2(n+1)-1)!} \frac{(2n-1)!}{n^2} \right| = \lim_{n \to \infty} \left(\frac{(n+1)^2}{(2n+1)!} \frac{(2n-1)!}{n^2} \right)$$

$$= \lim_{n \to \infty} \left(\frac{(n+1)^2}{(2n+1)(2n)(2n-1)!} \frac{(2n-1)!}{n^2} \right) = 0 < 1$$

بما أن L < 1 لذا حسب اختبار النسبة سنحصل على ان المتسلسلة اعلاه متقاربة.

$$d. \sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + 1}$$

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{(n+1)^2 + 1} \frac{n^2 + 1}{(-1)^n} \right| = \lim_{n \to \infty} \frac{n^2 + 1}{(n+1)^2 + 1} = 1$$

بما أن L=1 سوف لن يخبرنا شيئاً اختبار النسبة هنا. لذا سنلجاً الى اختبار اخر و هو اختبار المتسلسلات المتناوبة الاشارة. لاحظ ان

1.
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n^2 + 1} = 0$$
.

2.
$$b_n = \frac{1}{n^2+1} > \frac{1}{(n+1)^2+1} = b_{n+1}$$

من هذا سنحصل على أن المتسلسلة متقاربة.

$$e. \sum_{n=2}^{\infty} \frac{n+2}{2n+7}$$

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n+3}{2(n+1)+7} \frac{2n+7}{n+2} \right| = \lim_{n \to \infty} \frac{(n+3)(2n+7)}{(2n+9)(n+2)} = 1$$

بما أن L=1 سوف لن يخبرنا شيئاً اختبار النسبة هنا. لذا سنلجأ الى اختبار اخر و هو اختبار التباعد. لاحظ ان

$$\lim_{n\to\infty}\frac{n+2}{2n+7}=\frac{1}{2}\neq 0$$

من هذا سنحصل على أن المتسلسلة متباعدة حسب اختبار التباعد.

root test اختبار الجذر

هذا أخر اختبار سندرسه. كما هو الحال في اختبار النسبة سيخبرنا اختبار الجذر فيما أذا كانت متسلسلة مطلقة التقارب أم لا.

root test اختبار الجذر

لتكن
$$\sum a_n$$
 متسلسلة و ليكن

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$
$$= \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$

فان

- أذا كان L < 1 فان المتسلسلة مطلقة النقارب و بالتالي ستكون متقاربة.
 - . أذا كان L>1 فان المتسلسلة متباعدة.
- L=1 فان المتسلسلة قد تكون متباعدة أو مشروطة التقارب أو مطلقة التقارب (لذا نستخدم اختبار أخر في هذه الحالة) .

.
$$\lim_{n\to\infty} n^{\frac{1}{n}} = 1$$
 ملاحظة.

مثال. بين اياً من المتسلسلات الآتية متقاربة أو متباعدة.

a.
$$\sum_{n=1}^{\infty} \frac{n^n}{3^{1+2n}}$$

$$L = \lim_{n \to \infty} \left| \frac{n^n}{3^{1+2n}} \right|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{3^{\frac{1}{n}+2}} = \infty > 1$$

بما أن L>1 لذا حسب اختبار الجذر سنحصل على أن المتسلسلة أعلاه متباعدة.

b.
$$\sum_{n=0}^{\infty} \left(\frac{5n-3n^3}{7n^3+2} \right)^n$$

$$L = \lim_{n \to \infty} \left| \left(\frac{5n - 3n^3}{7n^3 + 2} \right)^n \right|^{\frac{1}{n}} = \lim_{n \to \infty} \left| \frac{5n - 3n^3}{7n^3 + 2} \right| = \left| -\frac{3}{7} \right| < 1$$

بما أن L < 1 لذا حسب اختبار الجذر سنحصل على ان المتسلسلة اعلاه متقاربة.

$$c. \sum_{n=3}^{\infty} \frac{(-12)^n}{n}$$

$$L = \lim_{n \to \infty} \left| \frac{(-12)^n}{n} \right|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{12}{n^{\frac{1}{n}}} = 12 > 1$$

بما أن L>1 لذا حسب اختبار الجذر سنحصل على ان المتسلسلة اعلاه متباعدة.