Conic Sections and Polar Coordinates 10.6 Graphing

10.7 Areas and Lengths

10.8 Conic Sections

16 October 2007

Polar to Rectangular Coordinates:

$$x = r \cos \theta, \quad y = r \sin \theta. \tag{1}$$

If r = 0 and $\theta \in \mathbb{R}$ the described point P(x,y) is the **origin** (0,0). If any **other** point P(x,y) is described by polar coordinates (r,θ) or (r',θ') then these coordinates are related by

$$r\cos\theta = r'\cos\theta'$$
 and $r\sin\theta = r'\sin\theta'$

or equivalently

$$r'=r$$
 and $\theta'=\theta+(2n)\pi,\ n\in\mathbb{Z}$ or
$$r'=-r \text{ and } \theta'=\theta+(2n+1)\pi,\ n\in\mathbb{Z}\,.$$

Rectangular to Polar Coordinates:

For a point P(x,y) different from the origin a polar coordinate description is given by

$$r = \sqrt{x^2 + y^2}$$
, $\theta = \tan^{-1} \frac{y}{x}$ if $x \neq 0$ or $\theta = \cot^{-1} \frac{x}{y}$ if $y \neq 0$. (2)

Symmetry: Reflection in x-axis

$$(x,y) \mapsto (x,-y)$$

$$\Leftrightarrow$$

$$(r\cos(\theta),r\sin(\theta)) \mapsto (r\cos(\theta),-r\sin(\theta))$$

$$= (r\cos(-\theta),r\sin(-\theta))$$

$$= (-r\cos(\pi-\theta),-r\sin(\pi-\theta))$$

$$\Leftrightarrow$$

$$(r,\theta) \mapsto (r,-\theta)$$
or
$$(r,\theta) \mapsto (-r,\pi-\theta).$$

Symmetry: Reflection in y-axis

$$(x,y) \mapsto (-x,y)$$

$$\Leftrightarrow$$

$$(r\cos(\theta), r\sin(\theta)) \mapsto (-r\cos(\theta), r\sin(\theta))$$

$$= (r\cos(\pi - \theta), r\sin(\pi - \theta))$$

$$= (-r\cos(-\theta), -r\sin(-\theta))$$

$$\Leftrightarrow$$

$$(r,\theta) \mapsto (r,\pi - \theta)$$
or
$$(r,\theta) \mapsto (-r,-\theta).$$

Symmetry: Reflection in origin:

$$(x,y) \mapsto (-x,-y)$$

$$\Leftrightarrow$$

$$(r\cos(\theta),r\sin(\theta)) \mapsto (-r\cos(\theta),-r\sin(\theta))$$

$$= (r\cos(\theta+\pi),r\sin(\theta+\pi))$$

$$\Leftrightarrow$$

$$(r,\theta) \mapsto (-r,\theta)$$

$$or$$

$$(r,\theta) \mapsto (r,\theta+\pi).$$

Slope of the Curve $r = f(\theta)$:

Given a function $r = f(\theta)$ the equations

$$x = f(\theta)\cos\theta$$
 and $y = f(\theta)\sin\theta$ (3)

provide a parameterized description of a curve in the (x, y)-plane.

Assuming $f'(\theta) \cos \theta - f(\theta) \sin \theta \neq 0$, the slope of the tangent to this parameterized curve can be computed by

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}.$$

When $f(\theta) = 0$ the slope equals $\frac{dy}{dx} = \tan \theta$, while $f'(\theta) = 0$ implies $\frac{dy}{dx} = -\cot \theta$, so that in that case the tangent is perpendicular to the ray from the origin to the point P(x,y).

Area in the Plane:

The area described by the conditions $\alpha \le \theta \le \beta$, $0 \le r \le f(\theta)$ is given by

$$A = \int_{\alpha}^{\beta} \frac{1}{2} (f(\theta))^2 d\theta. \tag{4}$$

The area described by the conditions $\alpha \leq \theta \leq \beta$, $0 \leq f_1(\theta) \leq r \leq f_2(\theta)$ is given by

$$A = \int_{\alpha}^{\beta} \frac{1}{2} \left((f_2(\theta))^2 - (f_1(\theta))^2 \right) d\theta.$$
 (5)

Length of a Polar Curve:

Assuming that $r=f(\theta)$ is continuously differentiable for $\alpha \leq \theta \leq \beta$ and that the point $P_{polar}(r,\theta)$ traces the graph exactly once, the length of the curve is given as follows

$$dx = (f'(\theta)\cos\theta - f(\theta)\sin\theta) d\theta$$
$$dy = (f'(\theta)\sin\theta + f(\theta)\cos\theta) d\theta$$
$$ds^2 = dx^2 + dy^2 = (f'^2(\theta) + f^2(\theta)) d\theta^2$$

so that

$$L = \int ds = \int_{\alpha}^{\beta} \sqrt{f'^2(\theta) + f^2(\theta)} d\theta.$$
 (6)

Area of Surface of Revolution of a Polar Curve

Assuming that $r=f(\theta)$ is continuously differentiable for $\alpha \leq \theta \leq \beta$ and that the point $P_{polar}(r,\theta)$ traces the graph exactly once, the areas of the surfaces generated by revolving the curve around the x- and y-axes is given as follows

x-axis:
$$S = \int_{\alpha}^{\beta} 2\pi f(\theta) \sin \theta \sqrt{f'^2(\theta) + f^2(\theta)} d\theta \qquad (7)$$

y-axis:
$$S = \int_{\alpha}^{\beta} 2\pi f(\theta) \cos \theta \sqrt{f'^2(\theta) + f^2(\theta)} d\theta \qquad (8)$$

Polar Equations for Lines:

If the perpendicular to a **line** L from the origin meets the line at the point $P_{polar}(r_0, \theta_0)$, where $r_0 > 0$ then the general point $P_{polar}(r, \theta)$ of the line L satisfies the equation

$$r\cos(\theta - \theta_0) = r_0. (9)$$

Polar Equations for Circles:

The general point $P_{polar}(r,\theta)$ of the **circle** with center $P_{polar}(r_0,\theta_0)$ and radius a>0 satisfies the equation

$$a^2 = r^2 + r_0^2 - 2rr_0\cos(\theta - \theta_0). \tag{10}$$

Ellipses, Parabolas, and Hyperbolas:

Using the eccentricity e>0 in the focus-directrix definition of the conic sections, where the focus F is assumed at the origin and the directrix D is described by x=k for some k>0, one finds the polar equations

$$PF = ePD$$

$$r = e(k - x)$$

$$= e(k - r\cos\theta)$$

$$r(1 + e\cos\theta) = ek \text{ so that, finally}$$

$$r = \frac{ek}{1 + e\cos\theta}.$$
(11)

Standard Ellipse:

An ellipse (not a circle) has an eccentricity e with 0 < e < 1. According to Figure 10.19 a translation in the x-direction by -c verifies that $k = \frac{a}{e} - c$ so that $ek = a - ec = \left(1 - e^2\right)a$ and

$$r = \frac{\left(1 - e^2\right)a}{1 + e\cos\theta}. (12)$$

Standard Parabola:

A parabola has eccentricity e = 1.

It is seen that k=2p>0 so that the equation for the parabola opening up to the left and with axis equal to the x-axis is

$$r = \frac{2p}{1 + \cos \theta}.\tag{13}$$

Standard Hyperbola:

A hyperbola has an eccentricity e with e > 1.

According to Figure 10.20 a translation in the x-direction by c verifies that $k=c-\frac{a}{e}$ so that $ek=ec-a=\left(e^2-1\right)a$ and

$$r = \frac{\left(e^2 - 1\right)a}{1 + e\cos\theta}, \quad \text{with } |\theta| < \cos^{-1}\left(-\frac{1}{e}\right). \tag{14}$$