
Course Outcome 2 (CO2)

Students should be able to understand and 

evaluate one-dimensional heat flow and in 

different geometries
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Lesson Outcomes from CO2 (Part 2) 

 To derive the equation for  temperature 

distribution in various geometries

 Thermal Resistance concept – to derive

expression for various geometries

 To evaluate the heat transfer using thermal 

resistance in various geometries

 To evaluate the critical radius of insulation

 To evaluate heat transfer from the rectangular fins
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STEADY HEAT CONDUCTION IN PLANE WALLS

for steady operation

In steady operation, the rate of heat transfer 

through the wall is constant.

Fourier’s law of 

heat conduction

Heat transfer through the wall can be modeled as 

steady and one-dimensional.
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Under steady conditions, the 

temperature distribution in a plane 

wall is a straight line: dT/dx = const.

Once the rate of heat conduction is 

available, the temperature T(x) at 

any location x can be determined by 

replacing T2 by T, and L by x.
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rate of heat transfer  electric current 

thermal resistance  electrical resistance 

temperature difference  voltage difference

Concept of Thermal Resistance

Conduction resistance of the wall:

Thermal resistance of the wall against 

heat conduction. 

Ohm’s Law

Heat conduction through wall

Increasing of R value will decrease 

the Q value and vice versa
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Schematic for convection resistance 

at a surface.

Newton’s law of cooling for convection

Convection resistance of the 

surface: Thermal resistance of the 

surface against heat convection.

When the convection heat transfer coefficient is very large (h → ), 

the convection resistance becomes zero and Ts  T. 

That is, the surface offers no resistance to convection.



• A surface exposed to the surrounding air 
might involves convection and radiation 
simultaneously.

• Total heat transfer at the surface is 
determined by adding ( subtracting if 
opposite direction) the radiation and 
convection components

• The convection and radiation resistances 
are parallel to each other.

• When Tsurr≈T∞, the radiation effect can 
properly be accounted for by replacing h in 
the convection resistance relation by 
hcombined = hconv+hrad
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Schematic for convection and

radiation resistances at a surface.
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Radiation resistance of the surface:

Thermal resistance of a surface against 

radiation. 

Radiation heat transfer coefficient
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Consider steady one-dimensional heat transfer through 

a plane wall that is exposed to convection on both sides.
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The thermal resistance network in electrical analogy.
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U is the overall heat 

transfer coefficient

Temperature drop
The temperature drop is proportional to thermal resistance of the layer

The temperature drop across a layer is

proportional to its thermal resistance.

from

rearrange to
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Multilayer Plane Walls

• Often walls are made of several layers of different materials. The thermal resistance 

concept can still be used for these composite walls. 

• This is done by developing a total thermal resistance for the wall.

• The rate of steady heat transfer through this two-layer composite wall can be 

expressed by:
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Example of heat transfer to 

wall 1



13



14



15

The roof of a house consists of a 15-cm-thick concrete slab

(k = 2 W/m·0C) that is 15 m wide and 20 m long. The

convection heat transfer coefficients on the inner and outer

surfaces of the roof are 5 and 12 W/m2 0C, respectively.

On a clear winter night, the ambient air is reported to be at

10 0C, while the night sky temperature is 100 K. The house

and the interior surfaces of the wall are maintained at a

constant temperature of 20 0C. The emissivity of both

surfaces of the concrete roof is 0.9. Considering both

radiation and convection heat transfers, determine the rate

of heat transfer through the roof, and the inner surface

temperature of the roof.

If the house is heated by a furnace burning natural gas with

an efficiency of 80 percent, and the price of natural gas is

$1.20/therm (1therm=105,500 kJ of energy content),

determine the money lost through the roof that night during

a 14 hours period.

Problem 



Assumptions: 1. Steady operating conditions exist, 2 

The emissivity and thermal conductivity of the roof are 

constant. 

Properties: The thermal conductivity of the concrete is k 

= 2 W/m⋅°C. The emissivity of both surfaces of the roof is 

0.9.

In steady operation, heat transfer from the room to the

roof (by convection and radiation) must be equal to the

heat transfer from the roof to the surroundings (by

convection and radiation), that must be equal to the heat

transfer through the roof by conduction.

16

radconv g,surroundin  toroofcond roof,radconv roof,  toroom   QQQQ 



• Taking the inner and outer surface temperatures of the roof to be Ts,in and 

Ts,out , respectively
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• The total amount of natural gas consumption during a 14-hour period is

• The money lost through the roof
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