Course Outcome 2 (CO2)

Students should be able to understand and
evaluate one-dimensional heat flow and In
different geometries

Lesson Outcomes from CO2 (Part 2)

¢ Thermal Resistance concept — to derive
expression for various geometries

e To evaluate the heat transfer using thermal
resistance Iin various geometries



STEADY HEAT CONDUCTION IN PLANE WALLS

S U Heat transfer through the wall can be modeled as

steady and one-dimensional.
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In steady operation, the rate of heat transfer
through the wall is constant.

. dT Fourier
_ .4 84 - Fourier’s law of
FIOURE 3 - Ceond, wan = ~HA dx (W) heat conduction
Heat transfer through a wall 1s one- -
dimensional when the temperature of

the wall varies in one direction only. 2
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Under steady conditions, the
temperature distribution in a plane
wall is a straight line: dT/dx = const.
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Once the rate of heat conduction is
available, the temperature T(x) at
any location x can be determined by
replacing T, by T, and L by x.



Concept of Thermal Resistance

I — T, _
O ond. wall] = KA l;— Heat conduction through wall
.} B Iy — 15 W Increasing of R value will decrease
<cond, wall R "W the Q value and vice versa
n L O A Conduction resistance of the wall:
Rol = 7x ("C/W) : .
v kA Thermal resistance of the wall against
heat conduction.
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. o Ohm’s Law V = IR
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(a) Heat flow
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(b) Electric current flow

rate of heat transfer — electric current
thermal resistance — electrical resistance
temperature difference — voltage difference
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Newton’s law of cooling for convection
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Convection resistance of the

surface: Thermal resistance of the
surface against heat convection.
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Schematic for convection resistance
at a surface.

When the convection heat transfer coefficient is very large (h — ),
the convection resistance becomes zero and T, ~T.

That is, the surface offers no resistance to convection.



Combined Heat Transfer Coefficient

A surface exposed to the surrounding air
might involves convection and radiation
simultaneously.

Total heat transfer at the surface is
determined by adding ( subtracting if
opposite direction) the radiation and
convection components

The convection and radiation resistances
are parallel to each other.

When Tsun=Te, the radiation effect can
properly be accounted for by replacing h in
the convection resistance relation by
hcombined = hconv+hrad
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Schematic for convection and
radiation resistances at a surface.
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I , Radiation resistance of the surface:
R.g= A (K/W) Thermal resistance of a surface against
Lrad s radiation.
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Radiation heat transfer coefficient



Consider steady one-dimensional heat transfer through
a plane wall that is exposed to convection on both sides.
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The thermal resistance network in electrical analogy.
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Temperature drop

The temperature drop is proportional to thermal resistance of the layer
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U iIs the overall heat
transfer coefficient
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The temperature drop across a layer is

proportional to its thermal resistance.
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Multilayer Plane Walls

« Often walls are made of several layers of different materials. The thermal resistance

concept can still be used for these composite walls.
» This is done by developing a total thermal resistance for the wall.
« The rate of steady heat transfer through this two-layer composite wall can be

expressed by:
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Example of heat transfer to
wall 1
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EXAMPLE 3-3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
4-mm-thick layers of glass (k = 0.78 W/m-K) separated by a 10-mm-wide
stagnant air space (k = 0.026 W/m-K). Determine the steady rate of heat
transfer through this double-pane window and the temperature of its inner sur-
face for a day during which the room is maintained at 20°C while the temper-
ature of the outdoors is —10°C. Take the convection heat transfer coefficients
on the inner and outer surfaces of the window to be h; = 10 W/m?-K and
h, = 40 W/m?.K, which includes the effects of radiation.

SOLUTION A double-pane window is considered. The rate of heat transfer
through the window and the inner surface temperature are to be determined.
Analysis This example problem is identical to the previous one except that
the single 8-mm-thick window glass is replaced by two 4-mm-thick glasses
that enclose a 10-mm-wide stagnant air space. Therefore, the thermal resis-
tance network of this problem involves two additional conduction resistances
corresponding to the two additional layers, as shown in Fig. 3—-13. Noting that
the area of the window is again A= 0.8 m X 1.5 m = 1.2 m?, the individual
resistances are evaluated from their definitions to be

1 1

Ri = Rconv = = = 0083330C/W
A (10 WimK)(1.2 m?)
i
R] = R3 = ROIass = : = 0004 = = 0004270C/W
. kiA  (0.78 W/m-K)(1.2 m?)
L
RZ = Rair = 2 = 001 ot 5 = 032050C/W
kA (0.026 W/m-K)(1.2 m?)
R =R - . — 0.02083°C/W

o

™2 A (40 W/m2-K)(1.2 m2)
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FIGURE 3-13

Schematic for Example 3-3.
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Noting that all three resistances are in series, the total resistance is

Rtotal = Rconv, 1 i Rglass, 1 + Rair + Rglass.Z + Rconv,Z
= 0.08333 + 0.00427 + 0.3205 + 0.00427 + 0.02083
= 0.4332°C/W

Then the steady rate of heat transfer through the window becomes

. T:x:l - Tx2 . [20 - (_10)]0C

R 0om3rcw 992w

which is about one-fourth of the result obtained in the previous example. This
explains the popularity of the double- and even triple-pane windows in cold
climates. The drastic reduction in the heat transfer rate in this case is due to
the large thermal resistance of the air layer between the glasses.

The inner surface temperature of the window in this case will be

I,=T, — Q'RCO,W,] = 20°C — (69.2 W)(0.08333°C/W) = 14.2°C

which is considerably higher than the —2.2°C obtained in the previous exam-
ple. Therefore, a double-pane window will rarely get fogged. A double-pane
window will also reduce the heat gain in summer, and thus reduce the air-
conditioning costs.
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FIGURE 3-13

Schematic for Example 3-3.
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Problem

The roof of a house consists of a 15-cm-thick concrete slab
(k = 2 W/m-°C) that is 15 m wide and 20 m long. The
convection heat transfer coefficients on the inner and outer
surfaces of the roof are 5 and 12 W/m? °C, respectively.

On a clear winter night, the ambient air is reported to be at
10 °C, while the night sky temperature is 100 K. The house
and the interior surfaces of the wall are maintained at a
constant temperature of 20 °C. The emissivity of both
surfaces of the concrete roof is 0.9. Considering both
radiation and convection heat transfers, determine the rate
of heat transfer through the roof, and the inner surface
temperature of the roof.

If the house is heated by a furnace burning natural gas with
an efficiency of 80 percent, and the price of natural gas is
$1.20/therm (1therm=105,500 kJ of energy content),
determine the money lost through the roof that night during
a 14 hours period.
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T,.=100K
T, =10°C

Concrete
roof




Assumptions: 1. Steady operating conditions exist, 2
The emissivity and thermal conductivity of the roof are

constant.
Tyy=100K

Properties: The thermal conductivity of the concrete is k 0,
=2 W/m-<°C. The emissivity of both surfaces of the roof is 7 =10°C

0.9. '

T,=20°C
In steady operation, heat transfer from the room to the

roof (by convection and radiation) must be equal to the
heat transfer from the roof to the surroundings (by
convection and radiation), that must be equal to the heat

transfer through the roof by conduction.

Q — Qroomto roof,conw+rad — Qroof, cond — Qroof tosurroundimg, conv+rad
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Taking the inner and outer surface temperatures of the roof to be T, .. and

Ts out» FESPECtively

s,in

Qroomto roof,conv+rad = hi A(T T )+ EGA(T _Tsflin)
—5x300(20—T, , )+ 0.9x567x10" x 300|(20+ 273)* —(T., , + 273 ]

room room

. T — Toim—T
Qroof’cond _ kA S, In S,out 2 > 300 S,out
L 0.15
Qroof tosurr., convirad — ( s out surr)+ ‘C’D-A( s,out Toc4)
~12x300(T, ,,,~10)+0.9x567x10" x300|(T, ,,, + 273) ~100* ]
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Solving the equations above simultaneously gives

Q=37440W,T,, =7.3°C,T,,,,=—2.1°C

s,out

The total amount of natural gas consumption during a 14-hour period is

_ Quar _ QAt  (37.440kJ)x (14 x60x 605)( 1therms

Quas = 0.80 0.80 0.80 105500 kJ

j = 22.36 therms

The money lost through the roof

Money lost = 22.36 therms x $1.20/therms = $26.8



