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FIGURE 2-14

One-dimensional heat conduction
through a volume element
in a long cylinder.



Taking the limit as Ar — 0 and At — 0 yields
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Variable conductivity:

Constant conductivity:

(1) Steady-state:
(a/at = 0)

(2) Transient, no heat generation:
(€gen = 0)

(3) Steady-state, no heat generation.:
(0/0r = 0 and €., = 0)




Heat Conduction Equation
In a Sphere

Variable conductivity:
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One-dimensional heat conduction
through a volume element in a sphere.
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Combined One-Dimensional Heat Conduction
Equation

Overall, the one-dimensional transient heat conduction equations
for the plane wall, cylinder, and sphere can be expressed as
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e | rk
n = 0 for a plane wall
n =1 for a cylinder
n = 2 for a sphere

In the case of a plane wall, replace r by x.

This equation can be simplified for steady-state or no heat
generation cases as described before.



GENERAL HEAT CONDUCTION EQUATION

Before, we considered one-dimensional heat conduction and
assumed heat conduction in other directions to be negligible.

However, sometimes we need to consider heat transfer in other
directions as well.

In such cases heat conduction is said to be multidimensional, and
In this section we develop the governing differential equation in
such systems in rectangular, cylindrical, and spherical.



Rectangular Coordinates
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Noting that the volume of the element is Vijapn = AxAvAz, the change in the
energy content of the element and the rate of heat generation within the ele-
ment can be expressed as
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Substituting into Eq. 2-36, we get
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Three-dimensional heat conduction
Tron,— T, through a rectangular volume element.
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Noting that the heat transfer areas of the element for heat conduction in the
x,y.and z directions are A, = AyAz, A, = AxAz, and A, = AxAy, respectively.
and taking the limit as Ax, Ay, Az and Ar — 0 yields
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since. from the definition of the derivative and Fourier’s law of heat
conduction,
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Eq. 2-38 1s the general heat conduction equation in rectangular coordinates.
In the case of constant thermal conductivity, it reduces to
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where the property a = k/pc is again the thermal diffusivity of the material.
Eq. 2-39 is known as the Fourier-Biot equation. and it reduces to these
forms under specified conditions:



(1) Steady-state:
(called the Poisson equation)

(2) Transient, no heat generation:

(called the diffusion equation)

(3) Steady-state, no heat generation.

(called the Laplace equation)

The three-dimensional heat
conduction equations reduce to
the one-dimensional ones when

the temperature varies in one
dimension only.
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Cylindrical Coordinates

Relations between the coordinates of a point in rectangular
and cylindrical coordinate systems:
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A differential volume element in

cylindrical coordinates. 10



Spherical Coordinates

Relations between the coordinates of a point in rectangular
and spherical coordinate systems:

X = rcos ¢ sin 6, y = rsin ¢ sin 6, and 7 = cos 6
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A differential volume element in
spherical coordinates.
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