Relational and Logical Operations

These operations and functions provide answers to True-False
questions.

One important use of this capability is to control the flow or order
of execution of a series of MATLAB commands (usually in an M-
file) based on the results of true/false questions.

As inputs to all relational and logical expressions, MATLAB
considers any nonzero number to be true, and zero to be False. The
output of all relational and logical expressions produces one for
True and zero for False, and the array is flagged as logical. That
IS, the result contains numerical values 1 and O that can be used in
mathematical statement, but also allow logical array addressing.

Relational Operations

Operation Description
= = Equal
= Not equal
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

Example:

>> a=1:9; b=9-a;

>> t=a>4 %$finds elements of (a) that
are greater than 4.

T =

000O0111T11

Zeros appear where a £ 4, and ones where a > 4.
>> t= (a==Db) 3%finds elements of (a) that are
equal to those in (b).

T =

00 0O0O0O0O0O0O0

L_ogical Operation

Operation Description
& Logical AND and(a,b)
| Logical OR or(a,b)
~ Logical NOT
xor (a,b) Logical EXCLUSIVE OR

Example:
>> a = [0 4 0 -3 -5 2];

>> b = ~a

D =

1 01 00O
>> c=aé&b

c =

O 0 0 O0O0O0

Example:letx=[2 -3 5 ;0 11 0], then
a) find elements in x that are greater than 2
solution

a)

>> x>2

ans =

0 0 1

01 0

L_ogical Functions

MATLAB has a number of useful logical functions that operate on
scalars, vectors, and matrices. Examples are given in the following
list:-

Function Description
any (x) True 1f any element of a vector 1s a nonzero number or 1s logical I (TRUE)
all (x) True 1f all elements of a vector are nonzero.
find (x) Find mdices of nonzero elements

isnan(x) True for Not-a-Number

isinf (x) True for infinite elements.

isempty (X) | True for empty array.

Example: Let A=[4 9 7 0 5]
>>any(A)

ans =1

>> all(A)

ans =0

>> find(A)

ans=1235

To remove zero elements from matrix
>> B=A(find(A));

>> B

B=4975

Precedence Operation

| (hughest) Parentheses (if nested parentheses exist, iner ones have
precedence)

Exponentiation

Logical NOT (~)

Multiplication, division

Addition, subtraction

N -~ L ro

6 Relational operators (>, <, >=, <=, ==, ~=)
7 Logical AND (&)
8 (lowest) Logical OR (|)

>> 3&7 | 3AND 7. |

ans = [3 and 7 are both true (nonzero). so the outcome is 1.
1
>> a=5|0 | 5 OR 0 (assign to variable a).|
a = ' 1 is assigned to = since at least one number is true (nonzero). |
1
>> ~25 [NOT 25. |
ans = The outcome is 0 since 25 1s true
0 (nonzero) and the opposite 1s false.

>> t=25%* ((12&0)+(~0)+(015)) [Using logical operators i a math E::{pressiml.]
t =

>0 " Define two vec-
>> x=[9 3 0 11 0 15]; wv=[2 0 13 -11 0 4]; | tors x and y.
>> X&Y { The outcome 1s a vector with 1 1n every position where
S = both xz and v are true (nonzero elements). and Os otherwise.
1 o) 1 o 1 ‘

The outcome is a vector with 1 in every position where either |

>> Z=X |y |
or both x and v are true (nonzero elements). and Os otherwise.

=z —
1 1 1 1 o 1
The outcome 1s a vector with O in every position where
>> ~ (X+Y) the vector x + vy 1s true (nonzero elements). and 1 in
ans = every position where x + v 1s false (zero elements).

o o o 1 1 o

>> 5>8 [Checks if 5 is larger than 8. |

ans = Since the comparisom is false (5 1s
o not larger than 8) the answer is 0.

>> a=5<10 [Checks if 5 1s smaller than 10. and assigns the answer to a.]

a = Since the comparison is trae (5 is smaller
1 than 10) the number 1 is assigned to a.

>> w=(6<1lO0)+ (T7>B)+ (E*¥3==60,4)

= =

'Equal to 1 since Equal to O since 7 is
6 is smaller than 10. not larger than 8.

UUsing relational operators
in math expression.

Equal to 1 since 5%3
1s equal to 60/4.

y:

2
>> b=[15 66 © 4 11 7 14]1; e=[8 20 © 2 19 7 10]:

Define vec-
tors o and <.

.

>> d=e>=b | Checks which < elements are larger than or equal to & elements. |
cl =

o 1 1 o 1 1 o

[Assigns 1 where an element of < is larger than or equal to an element of b.]

>> b == c | Checks which b elements are equal to — elements. |
an=s =

O O i O O 1 O
>> b~=c [Checks which I elements are not equal to — elements. |
ans =

u 1 (0] u u] u
>> f=b—c>0 Subtracts < from kb and then checks
£ = which elements are larger than zero.

u O (0] u O] u
>> Aa=[2 9 4; -3 5 2; 6 T —-11 [Define a 3 = 3 matrix 2.]
- —

=2 S 4

-3 5 =2
& 7 -1 Checks which elements in A are smaller than

> B=RAc—=2 or equal to 2. Assigns the results to matrix B.

1 0 0
1 0 1
0 0 1
>> r = [8 12 9 4 23 19 10] | Define a vector . |
r =
8 12 9 4 23 19 10
>> s=r<=10 | Checks which r elements are smaller than or equal to 10. |
5 =
1 0 1 1 0 0 1
A logical vector = with 1s at positions where
elements of r are smaller than or equal to 10.
>> t=r(s) | Use s for addresses in vector r to create vector t.
t = Vector t consists of elements of |
8 9 4 10 r in positions where s has 1s.
>> w=r (r<=10) ~ The same procedure can be done in one step.
w =

8 9 4 10

>> 3+4<16/2 -+ and / are exeouted irs.

ans = | The answeris | since 7<§ is true.
1

>> 3+(4<16) /2 [4< 16 s executed first, and is equal to 1, since it is true,

ans = | 3.5is obtained from 3+ 1/2.

3.5000

>> x=-2; y=5; [Define variables x and y. |

>> =-5<x<-1 This inequality 1s correct mathematically. The answer.,

ans = however, is false since MATLAB executes from left to
0 right. =5 <x 1s true (=1) and then 1 < -1 1s false (0).

>> -5<x & x<-1 The mathematically correct statement is obtained by

ans = using the logical operator &. The inequalities are exe-
1 cuted first. Since both are true (1). the answer 1s 1.

>> ~(y<7) - — :

= [y < 7 1s executed first, it is true (1). and ~1 1s 0.]
0

>> ~y<7

~y 1s executed first. y 1s true (1) (since y

ans =1 1s nonzero), ~1 1s 0, and 0 < 7 1s true (1).

>> ~((y>=8) | (x<-1)) y >= 8 (false). and x < -1 (true) are exe-

ans = cuted first. OR 1s executed next (true). ~
0 1s executed last, and gives false (0).

>> ~(y>=8) | (x<-1) y >= 8 (false). and x < -1 (true) are executed

ans = first. NOT of (y >= 8) 1s executed next (true).

1 OR 1s executed last, and gives true (1).

Equal (==

a = b,
b = 5;
result = (a == Db);

Checks if a is equal to b. Returns true (1) if they are equal.

Not Equal (~=)

a = 5;
@ 3
result = (a ~= Db);

Checks if a is not equal to b. Returns true if they are
different.

Greater Than (>)

a = 10;
b = 7;
result = (a > b);

Checks if a is greater than b. Returns true if yes.

Less Than (<)

a = 3;
b = 8;
result = (a < b);

Checks if a is less than b. Returns true if yes.

Greater Than or Equal (>=)

a = 4;
b 4 .
result = (a >= Db);

Checks if a is greater than or equal to b.

Less Than or Equal (<=)

a = 2;
b 5;
result = (a <= b);

Checks if a is less than or equal to b.

Logical AND (&)

a = Lrue;
b = false;
result = a & b;

Returns true only if both a and b are true.

Logical OR ()

a = true;
b = false;
result = a | b;

Returns true if either a or b is true.

Logical NOT ()

a = true;
result = ~a;

Returns the opposite logical value of a.

MATLAB Programming Basics

Flow Control with Examples

If - Else - Elseif

X = b,

if x > O

disp('Positive number')
elseif x < O

disp ('Negative number')
else

disp('Zero')
end

This structure allows decision making. The program checks if x
is positive, negative, or zero, and displays the result.

For Loop

for 1 = 1:5
disp(['Value: ', numZstr(1)])
end

The 'for' loop repeats code a specific number of times. Here, it
displays numbers from 1 to 5.

While Loop

1 = 1;
while 1 <= 5
disp(['l1 = ', numZ2str(1i)])

1 =1+ 1;
end

The 'while' loop continues as long as the condition is true. In this
case, it runs until i becomes greater than 5.

Break and Continue

for 1 = 1:10
1f 1 ==
break;
end
1f mod(1,2) ==
continue;
end
disp (1)
end

'‘break’ stops the loop completely. 'continue’ skips to the next
iteration. This loop prints odd numbers until it hits 5.

Switch - Case

day = 3;

switch day
case 1
disp('Sunday"')
case 2
disp ('Monday"')
case 3
disp ('Tuesday')
otherwise
disp ('Unknown day')
end

The 'switch' statement selects one of many code blocks to run,
depending on the value of a variable (day).

Example 1: if statement
x=10;
ifx>5

disp('x is greater than 5');
elseif x ==

disp('x is equal to 5');
else

disp('x is less than 5');

end

Example 2: for loop
fori=1:5
disp(['Iteration number: ', num2str(i)]);

end

Example 3: while loop
1=1;
whilei<=5
disp(['i ="', num2str(i)]);
I=i+1;

end

Example 4: switch statement
day = 'Monday’;
switch day
case 'Monday'
disp('Start of the week!’);
case 'Friday'
disp(‘Weekend is near!’);
otherwise
disp('Just a regular day.');

end

Example 5: if with compound condition
a=5b=7;
ifa<b&&b>6
disp('Both conditions are true.');
end
Example 6: Sum numbers using for loop
sum = 0;
fori=1:10
sum =sum + i;
end

disp(['Sum ="', num2str(sum)]);

Example 7: while loop with break
n=1;
while true

disp(n);

ifn==

break;
end
n=n+1;

end

Example 8: switch with numeric values
X=2;
switch x
casel
disp('One');
case 2
disp('Two');
otherwise
disp('Other');

end

Exercise 1: Even or Odd Checker
Goal: Write a program to check whether a
number is even or odd using if

n = input('Enter a number: ');
if mod(n, 2) ==

disp('The number is even.');
else

disp('The number is odd.");
end

Exercise 2: Display Numbers from 1 to 10

fori=1:10
disp(i);
end

Exercise 3: Grade Evaluation
Goal: Use switch to print a message based on a letter grade
grade = input('Enter your grade (A, B,C, D, F): ', 's');
switch grade
case 'A’
disp('Excellent!’);
case 'B'
disp('Good!’);
case 'C’
disp('Fair’);
case 'D'
disp('Poor’);
case 'F'
disp('Fail');
otherwise
disp('Invalid grade');
end

Exercise 4: Factorial of a Number

Goal: Use a for loop to calculate the factorial of a
number

n = input('Enter a number:');

fact =1;
fori=1:n

fact = fact * i;
end

disp(['Factorial =", num2str(fact)]);

Exercise 5: Count Down Using while
Goal: Use while to count down from a number to 1.
n = input('Enter a number: ');
whilen>=1
disp(n);
n=n-1;

End

Exercise 6: Use break inside for loop
Goal: Stop printing numbers once you reach number 5.
fori=1:10
ifi==
break;
end
disp(i);

end

EXxercises

1-ifg=[1 5 6 8 32 45 9 10 1]1,x=[3 5
7 8 3 1 2 4 11 5 9],

then:

a) find elements of (q) that are greater than 4.

b) find elements of (g) that are equal to those In (X).
¢) find elements of (x) that are less than or equal to 7.
2-1f x=[10 3 ; 9 15], y=[10 0; 9 37,
z=[-1 0; -3 2], whatisthe

output of the following statements:

a) v =x >y

-

) W = z2 >= vy
cC) u= ~z &Y
) €

Q.

= X & vy < Z

3-letx=[2 -3 5 ;0 11 0]

find the number of nonzero elements In X

Sol:-

>> t=~(~X) ;

>> sum(sum(t))
ans =

4

Any question??¢?
Thanks

