
Matlab

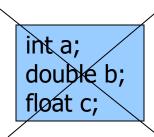
MATLAB stands for "MATrix LABoratory".

It was originally developed in the **late 1970s** by **Cleve Moler** to provide easy access to matrix software for engineers and scientists. MATLAB is widely used for **numerical computing**, **data analysis**, **algorithm development**, **and visualization**.

Since MATLAB is optimized for matrix and vector operations, it is especially popular in fields like engineering, physics, finance, and machine learning.

Matlab

In **MATLAB**, a variable is used to store data, such as numbers, arrays, or characters, for processing and calculations. Here's a quick guide to understanding and using variables in MATLAB:


1. Declaring Variables

In MATLAB, you don't need to declare a variable type explicitly. You just assign a value to a name.

x = 5; % Assigning the value 5 to variable x y = 10; % Assigning the value 10 to variable y z = x +y; % Adding x and y and storing in z

Variables

No need for types. i.e.,

 All variables are created with double precision unless specified and they are matrices.

 After these statements, the variables are 1x1 matrices with double precision

2. Naming Rules for Variables

- . Must start with a **letter** (A-Z, a-z).
- . Can contain **letters, numbers, and underscores** (_).
- . Case-sensitive (Var1 is different from Var1).
- . Cannot use MATLAB reserved keywords (like if, for, while).

Valid names:

al, speed, temperature_sensor

Invalid names:

lvar, if, x-y

4. Different Data Types in MATLAB Variables

MATLAB supports different types of variables:

- A = 10; % Integer (double by default)
- B = 3.14; % Floating point
- C = 'Hello'; % Character array (string)
- D = [1 2 3 4]; % Row vector
- E = [1; 2; 3; 4]; % Column vector
- F = [1 2; 3 4]; % Matrix (2x2)

5. Special Variables in MATLAB

MATLAB provides built-in variables that you can use:

- . pi $\rightarrow 3.1416$
- . inf \rightarrow Infinity
- . $NaN \rightarrow Not a Number$

. $_{eps} \rightarrow$ Smallest difference between two numbers Example:

```
radius = 5;
area = pi * radius^2; % Calculate area of a circle
```

6. Variable Conversion

- You can convert variables to different types:
- A = 5.5;
- B = int32(A); % Convert to integer
- C = num2str(A); % Convert number to string

7. Saving and Loading Variables. Save workspace variables to a file:

save('myData.mat')

. Load saved variables:

load('myData.mat')

8. Global Variables

Use global to share a variable between different functions. global x

$$\mathbf{x}=\mathbf{50};$$

Summary

- •Variables store values for computations.
- •MATLAB assigns types automatically.
- •You can check, clear, and convert variables.
- •global allows variable sharing between functions.

MATLAB is built for handling vectors, matrices, and arrays efficiently. Let's break them down:

1. Vectors in MATLAB

A vector is a one-dimensional array. It can be either a row vector

or a column vector.

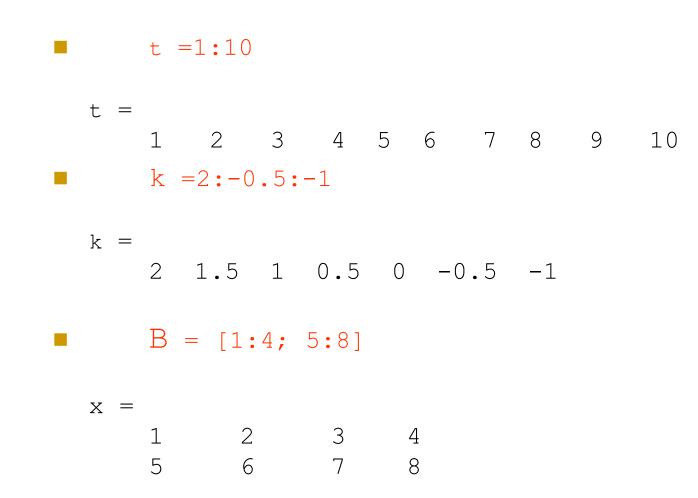
Creating a Row Vector (1×n matrix)

A row vector is a horizontal array of elements.

A = [1 2 3 4 5]; % Row vector

B = [1, 2, 3, 4, 5]; % Also a row vector (commas or spaces work)

Creating a Column Vector (n×1 matrix)


A column vector is a vertical array of elements.

C = [1; 2; 3; 4; 5]; % Column vector (use semicolon `;`)

Array, Matrix

a vector x = [1 2 5 1] x = 1 2 5 1 **a matrix** y = [1 2 3; 5 1 4; 3 2 -1] у = 2 3 1 4 2 -1 1 5 3 transpose y = x' у = 1 2 5 1

Long Array, Matrix

Generating Vectors from functions

•	zeros(M,N)	MxN matrix of zeros			zero	s(1,	3)	
			Х	=		2		
				0		0	0	
•	ones(M,N)	MxN matrix of ones		=	ones	(1,3)	
				1		1	1	
•	rand(M,N)	MxN matrix of uniformly distributed random numbers on (0,1)	Х	=		0.2		0.6068

Matrix Index

- The matrix indices begin from 1 (not 0 (as in C))
- The matrix indices must be positive integer

Given:

A =	>> A(6)	>> A (3, 2)	≫ A(2, :)		>> A(1:2,2)
3 5 3	ans =	ans =	ans =		ans =
6 8 2					5
2 7 3	7	7	6 8	2	8

A(-2), A(0)

Error: ??? Subscript indices must either be real positive integers or logicals.

A(4,2) Error: ??? Index exceeds matrix dimensions.

Concatenation of Matrices

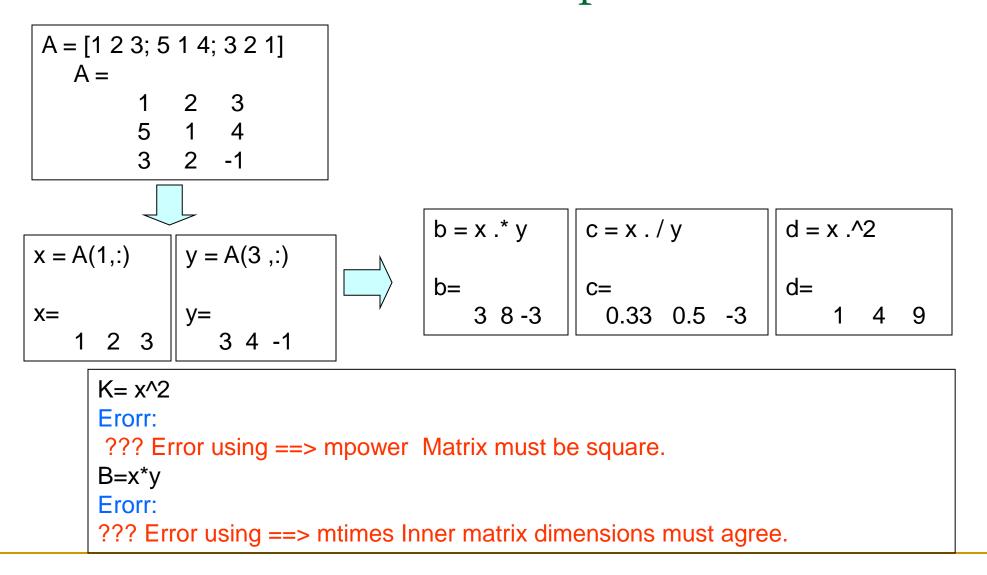
C = [x y ;z] Error: ??? Error using ==> vertcat CAT arguments dimensions are not consistent.

Operators (arithmetic)

- + addition
- subtraction
- * multiplication
- / division
- ^ power
- ' complex conjugate transpose

Matrices Operations

Given A and B:


>> a	= [1 :	2 3;4 \$	5 6;7	89]	>>	В	=	[3	5	2;	5	2	8;	3	6	9]	
A =					B =	=											
	1	2	3				3		5	r		2					
	4	5	6				5		2	-		8					
	7	8	9				3		e	6		9					
											_						_

Addition			_	Subtraction				Prod	uct		Transpose					
>> X = A + B] ;	>> Y = A - B				>> z = 1	4 * B		>> T = A'					
x =			1	(=				Z =			Т	=				
4	7	5		-2	-3	1		22	27	45		1	4	7		
9	7	14		-1	3	-2		55	66	102		2	5	8		
10	14	18		4	2	0		88	105	159		3	6	9		

Operators (Element by Element)

.* element-by-element multiplication
./ element-by-element division
.^ element-by-element power

The use of "." – "Element" Operation

Special Vectors

•Linspace: Creates a vector with evenly spaced elements.

x = linspace(1, 10, 5); % Generates [1 3.25 5.5 7.75 10]

•**Colon Operator (:)**: Defines a range with a step size. y = 1:2:10; % Generates [1 3 5 7 9] (start:step:end)

•Zero vector and One vector:

Z = zeros(1,5); % Row vector of 5 zeros

O = ones(5,1); % Column vector of 5 ones.

2. Matrices in MATLAB

A matrix is a two-dimensional array of numbers. Creating a Matrix

- M = [1 2 3; 4 5 6; 7 8 9]; % 3×3 matrix
- •Numbers in **each row** are separated by spaces or commas.
- Rows are separated by **semicolons (;)**.

Accessing Elements in a Matrix

M(2,3) % Access the element in row 2, column 3 (Output: 6)

- M(:,2) % Get all rows in column 2 (Output: [2; 5; 8])
- M(1,:) % Get all columns in row 1 (Output: [1 2 3])

Special Matrices

- I = eye(3); % 3×3 Identity matrix
- $Z = zeros(3,4); \% 3 \times 4 Zero matrix$
- O = ones(2,3); % 2×3 Matrix of ones
- R = rand(2,2); % 2×2 Matrix with random values (0 to 1)

3. Arrays in MATLAB

An **array** is a generalized collection of elements (1D, 2D, or multidimensional).

Creating an N-Dimensional Array

A = rand(3,3,2); % $3 \times 3 \times 2$ 3D array B = zeros(2,3,4); % $2 \times 3 \times 4$ 3D array of zeros

Accessing Elements in an Array

A(2,3,1) % Get the element at row 2, column 3, layer 1

4. Vector vs. Matrix vs. Array

Туре	Dimensions	Example					
Vector	1D	[1 2 3] Or [1; 2; 3]					
Matrix	2D	[1 2; 3 4]					
Array	3D or more	rand(2,2,3)					

Conclusion

- . Vectors are 1D arrays (row or column).
- . Matrices are 2D arrays (rows × columns).
- . Arrays are N-dimensional structures that extend beyond matrices.

Thanks