
Matlab

MATLAB stands for "MATrix LABoratory".

It was originally developed in the late 1970s by Cleve Moler to provide

easy access to matrix software for engineers and scientists. MATLAB is

widely used for numerical computing, data analysis, algorithm

development, and visualization.

Since MATLAB is optimized for matrix and vector operations, it is

especially popular in fields like engineering, physics, finance, and

machine learning.

Matlab

Variables in MATLAB
In MATLAB, a variable is used to store data, such as numbers,

arrays, or characters, for processing and calculations. Here’s a quick

guide to understanding and using variables in MATLAB:

1. Declaring Variables

In MATLAB, you don’t need to declare a variable type

explicitly. You just assign a value to a name.
x = 5; % Assigning the value 5 to variable x

y = 10; % Assigning the value 10 to variable y

z = x +y; % Adding x and y and storing in z

Variables

 No need for types. i.e.,

 All variables are created with double precision unless

specified and they are matrices.

 After these statements, the variables are 1x1 matrices

with double precision

int a;
double b;
float c;

Example:
>>x=5;
>>x1=2;

Variables in MATLAB

2. Naming Rules for Variables

 Must start with a letter (A-Z, a-z).

 Can contain letters, numbers, and underscores (_).

 Case-sensitive (Var1 is different from var1).

 Cannot use MATLAB reserved keywords (like if, for, while).

✅ Valid names:
a1, speed, temperature_sensor

✅ Invalid names:
1var, if, x-y

Variables in MATLAB

4. Different Data Types in MATLAB Variables

MATLAB supports different types of variables:
A = 10; % Integer (double by default)

B = 3.14; % Floating point

C = 'Hello'; % Character array (string)

D = [1 2 3 4]; % Row vector

E = [1; 2; 3; 4]; % Column vector

F = [1 2; 3 4]; % Matrix (2x2)

Variables in MATLAB

5. Special Variables in MATLAB

MATLAB provides built-in variables that you can use:

 pi → 3.1416

 inf → Infinity

 NaN → Not a Number

 eps → Smallest difference between two numbers

Example:
radius = 5;

area = pi * radius^2; % Calculate area of a circle

Variables in MATLAB

6. Variable Conversion

You can convert variables to different types:
A = 5.5;

B = int32(A); % Convert to integer
C = num2str(A); % Convert number to string

Variables in MATLAB

7. Saving and Loading Variables

 Save workspace variables to a file:
save('myData.mat')

 Load saved variables:
load('myData.mat')

Variables in MATLAB

8. Global Variables

Use global to share a variable between different functions.

global x

x = 50;

Summary

•Variables store values for computations.

•MATLAB assigns types automatically.

•You can check, clear, and convert variables.

•global allows variable sharing between functions.

 Vectors, Matrices, and Arrays in MATLAB

MATLAB is built for handling vectors, matrices, and
arrays efficiently. Let’s break them down:

 1. Vectors in MATLAB
A vector is a one-dimensional array. It can be either a row vector

or a column vector.

Creating a Row Vector (1×n matrix)

A row vector is a horizontal array of elements.
A = [1 2 3 4 5]; % Row vector

B = [1, 2, 3, 4, 5]; % Also a row vector (commas or spaces work)

Creating a Column Vector (n×1 matrix)

A column vector is a vertical array of elements.
C = [1; 2; 3; 4; 5]; % Column vector (use semicolon `;`)

Array, Matrix

 a vector x = [1 2 5 1]

 x =

 1 2 5 1

 a matrix y = [1 2 3; 5 1 4; 3 2 -1]

 y =

 1 2 3

 5 1 4

 3 2 -1

 transpose y = x’ y =

 1

 2

 5

 1

Long Array, Matrix

 t =1:10

 t =

 1 2 3 4 5 6 7 8 9 10

 k =2:-0.5:-1

 k =

 2 1.5 1 0.5 0 -0.5 -1

 B = [1:4; 5:8]

 x =

 1 2 3 4

 5 6 7 8

Generating Vectors from functions

 zeros(M,N) MxN matrix of zeros

 ones(M,N) MxN matrix of ones

 rand(M,N) MxN matrix of uniformly

 distributed random

 numbers on (0,1)

x = zeros(1,3)

x =

 0 0 0

x = ones(1,3)

x =

 1 1 1

x = rand(1,3)

x =

 0.9501 0.2311 0.6068

Matrix Index

 The matrix indices begin from 1 (not 0 (as in C))

 The matrix indices must be positive integer

Given:

A(-2), A(0)

Error: ??? Subscript indices must either be real positive integers or logicals.

A(4,2)

Error: ??? Index exceeds matrix dimensions.

Concatenation of Matrices

 x = [1 2], y = [4 5], z=[0 0]

 A = [x y]

 1 2 4 5

 B = [x ; y]

 1 2

 4 5

 C = [x y ;z]

Error:

??? Error using ==> vertcat CAT arguments dimensions are not consistent.

Operators (arithmetic)

+ addition

- subtraction

* multiplication

/ division

^ power

‘ complex conjugate transpose

Matrices Operations

Given A and B:

Addition Subtraction Product Transpose

Operators (Element by Element)

.* element-by-element multiplication

./ element-by-element division

.^ element-by-element power

The use of “.” – “Element” Operation

K= x^2

Erorr:

 ??? Error using ==> mpower Matrix must be square.

B=x*y

Erorr:

??? Error using ==> mtimes Inner matrix dimensions must agree.

A = [1 2 3; 5 1 4; 3 2 1]

 A =

 1 2 3

 5 1 4

 3 2 -1

y = A(3 ,:)

y=

 3 4 -1

b = x .* y

b=

 3 8 -3

c = x . / y

c=

 0.33 0.5 -3

d = x .^2

d=

 1 4 9

x = A(1,:)

x=

 1 2 3

Special Vectors
•Linspace: Creates a vector with evenly spaced
elements.
x = linspace(1, 10, 5); % Generates [1 3.25 5.5 7.75 10]

•Colon Operator (:): Defines a range with a step size.
y = 1:2:10; % Generates [1 3 5 7 9] (start:step:end)

Vectors, Matrices, and Arrays in MATLAB

Vectors, Matrices, and Arrays in MATLAB

•Zero vector and One vector:

Z = zeros(1,5); % Row vector of 5 zeros

O = ones(5,1); % Column vector of 5 ones.

Vectors, Matrices, and Arrays in MATLAB

2. Matrices in MATLAB

A matrix is a two-dimensional array of numbers.

Creating a Matrix
 M = [1 2 3; 4 5 6; 7 8 9]; % 3×3 matrix
•Numbers in each row are separated by spaces or
commas.
•Rows are separated by semicolons (;).

Vectors, Matrices, and Arrays in MATLAB

Accessing Elements in a Matrix
M(2,3) % Access the element in row 2, column 3 (Output: 6)

M(:,2) % Get all rows in column 2 (Output: [2; 5; 8])

M(1,:) % Get all columns in row 1 (Output: [1 2 3])

Special Matrices
I = eye(3); % 3×3 Identity matrix

Z = zeros(3,4); % 3×4 Zero matrix

O = ones(2,3); % 2×3 Matrix of ones

R = rand(2,2); % 2×2 Matrix with random values (0 to 1)

Vectors, Matrices, and Arrays in MATLAB

3. Arrays in MATLAB
An array is a generalized collection of elements (1D, 2D, or multi-

dimensional).

Creating an N-Dimensional Array
A = rand(3,3,2); % 3×3×2 3D array

B = zeros(2,3,4); % 2×3×4 3D array of zeros

Accessing Elements in an Array
A(2,3,1) % Get the element at row 2, column 3, layer 1

Vectors, Matrices, and Arrays in MATLAB

Type Dimensions Example

Vector 1D [1 2 3] or [1; 2; 3]

Matrix 2D [1 2; 3 4]

Array 3D or more rand(2,2,3)

4. Vector vs. Matrix vs. Array

Conclusion

 Vectors are 1D arrays (row or column).

 Matrices are 2D arrays (rows × columns).

 Arrays are N-dimensional structures that extend beyond matrices.

Questions

 ?

 ?

 ?

 ?

 ?

Thanks

