

Ministry of Higher Education and Scientific Research Tikrit University Engineering Collage –Al shirqat

FOAT FUNDAMENTALS OF ELECTRICAL ENGINEERING LECTURE 2 SERIES AND PARALLEL RESISTORS

Classroom: xtofyek4 الصباحي Classroom: cftcvpvp المسائى PREPARED BY TEACHING ASSISTANT

ABDULLAH AHMED ALWAN

General objectives

≻Series Connection

- **Increases total resistance:** When resistors are connected in series, the total resistance increases, reducing the current flowing through the circuit.
- **Divides voltage:** The total voltage is divided among the components connected in series according to their resistance values.
- Maintains constant current: The same current flows through all components in a series connection.
- Used in applications such as: Voltage dividers, filter circuits, and circuit protection.
- **≻**Parallel Connection
- **Decreases total resistance:** When resistors are connected in parallel, the total resistance decreases, increasing the total current in the circuit.
- **Divides current:** The total current is divided among the parallel branches according to their resistance values.
- Maintains constant voltage: The voltage across all components in parallel remains the same.
- Used in applications such as: Increasing power capacity, load distribution, and minimizing power loss.

General objectives

>Voltage Divider

- **Reduces voltage to a specific level:** Used to generate a voltage lower than the total voltage as needed.
- **Provides reference signals:** Used in electronic circuits as a reference voltage source.
- Used in applications such as: Analog circuits, sensors, and measuring devices.

Current Divider

- **Distributes current among branches:** It divides the current among multiple resistors connected in parallel.
- Controls the current flowing through each branch: Based on the resistance value of each path.
- Used in applications such as: DC circuits, filtering techniques, and measuring instruments.

Specific objectives:

> Series Connection

- Achieve a higher voltage at the same current.
- Distribute the total voltage across multiple electrical components.
- Maintain the same current in all elements connected in series.
- Improve the performance of systems requiring a higher voltage than a single source can provide.
- Increase the equivalent resistance of the circuit.

> Parallel Connection

- Achieve a higher current at the same voltage.
- Distribute the total current across multiple branches to prevent overload.
- Ensure circuit operation continues even if one component fails.
- Reduce the equivalent resistance of the circuit, increasing power transmission efficiency.

Specific objectives:

> Voltage Divider

- Reduce the voltage to a suitable level for different loads.
- Provide a reference voltage for control circuits and sensors.
- Protect sensitive components from high voltage.
- Simplify electronic circuits requiring different voltage levels.

≻Current Divider

- Distribute current among multiple branches in a circuit.
- Reduce the current in each branch to protect components from overloading.
- Improve energy consumption efficiency in electrical circuits.
- Used in measurement and control circuits to determine the appropriate current for each element.

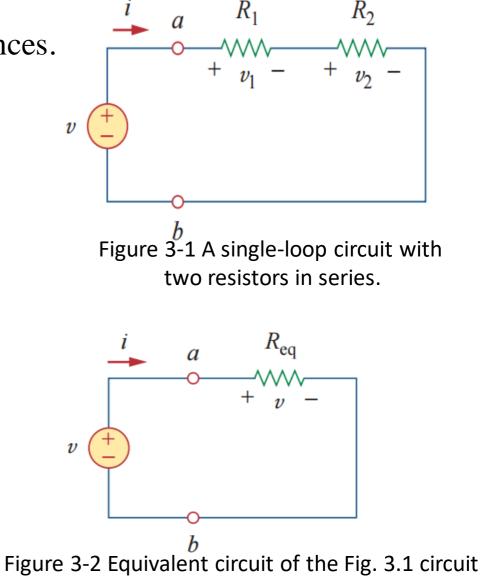
Series Resistors and Voltage Division

The equivalent resistance of any number of resistors

connected in series is the sum of the individual resistances.

For N resistors in series then

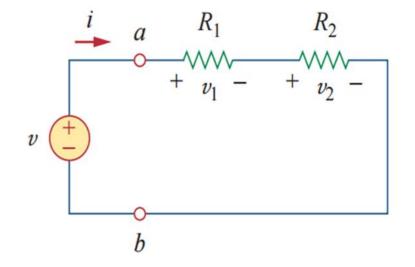
Resistance:
$$R_{eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^N R_n$$


$$R_{eq} = R_1 + R_2$$

Voltage :

$$v = v_t = v_1 + v_2$$

Current :


$$i = i_t = i_1 = i_2$$
$$i = i_t = \frac{v_t}{R_{eq}}$$

Series Resistors and Voltage Division

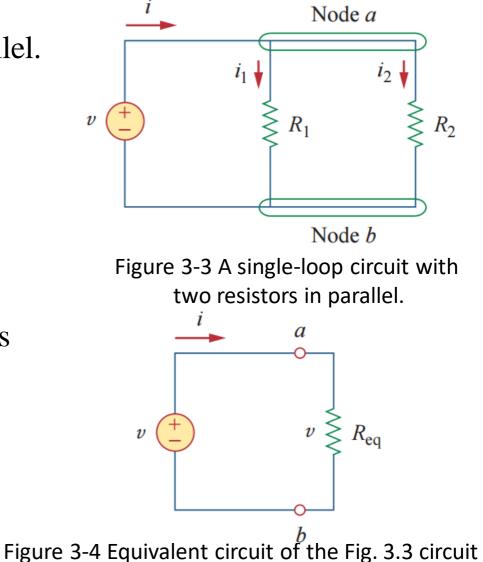
$$v_1 = \frac{R_1}{R_1 + R_2}v, \qquad v_2 = \frac{R_2}{R_1 + R_2}v$$

$$v_{\chi} = v \times \left(\frac{R_{\chi}}{R_1 + R_2}\right)$$

Parallel Resistors and Current Division

The **equivalent resistance** of two parallel resistors is equal to the product of their resistances divided by their sum. i

the general case of a circuit with N resistors in parallel.


The equivalent resistance is

Resistance :

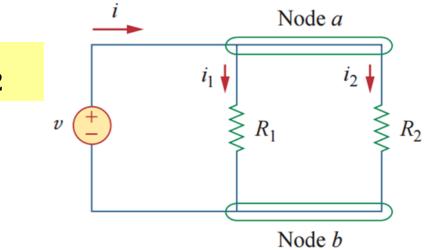
$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

where R_{eq} is the equivalent resistance of the resistors in parallel:

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Parallel Resistors and Current Division

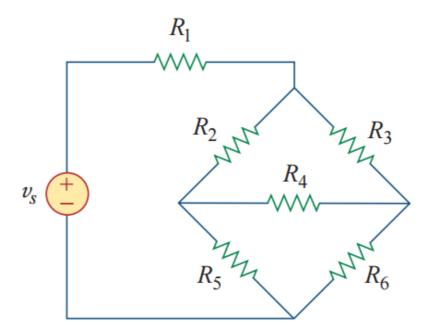
Voltage :


$$v = v_t = v_1 = v_2 = i_t \times R_{eq} = i_1 R_1 = i_2 R_2$$

Current :

 $i = i_t = i_1 + i_2$

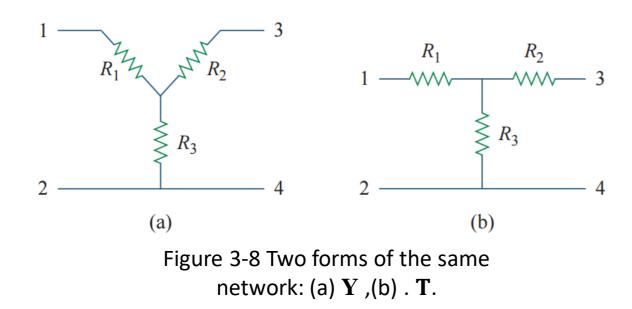
$$i_1 = i_t \times \left(\frac{R_2}{R_1 + R_2}\right)$$

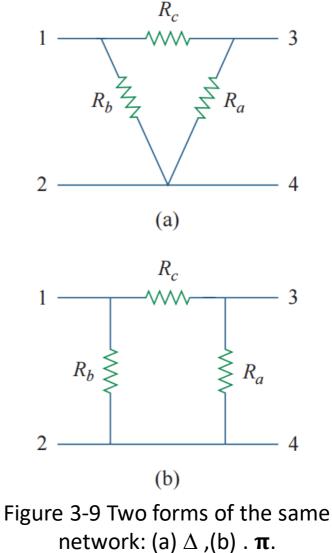

$$i_2 = i_t \times \left(\frac{R_1}{R_1 + R_2}\right)$$

$$i = i_t = \frac{v_t}{R_{eq}}$$

Wye-Delta Transformations

Situations often arise in circuit analysis when the resistors are neither in parallel nor in series. For example, consider the bridge circuit as shown in figure bellow:


In this circuit R_1 , R_2 , R_3 , R_4 , R_5 and R_6 are neither in parallel nor in series.


Question : When to convert **delta** \rightarrow **star** or vice versa?

- **⊘** Delta → Star: Used when reducing starting current or lowering the voltage on windings is needed. This is common in motor starting applications to reduce the inrush current.
- **Star** → **Delta**: Used when operating equipment at full power after startup or when a higher voltage is required. This is typically seen in star-delta starters for motors, where the motor starts in the star configuration (low voltage) and then switches to delta (full voltage) for normal operation.

Wye-Delta Transformations

These are the wye (**Y**) or tee (**T**) network shown in Fig. 3.8 and the delta (Δ) or pi (π) network shown in Fig. 3.9

Delta to Wye Conversion

Each resistor in the Y network is the product of the resistors in the two adjacent Δ branches, divided by the sum of the three Δ resistors.

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

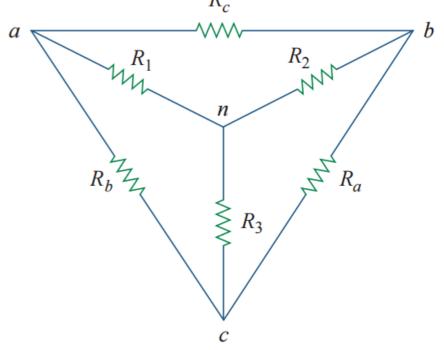


Figure 3-10 Superposition of Y and Δ networks as an aid in transforming one to the other

Wye to Delta Conversion

Each resistor in the Δ network is the sum of all possible products of Y resistors taken two at a time, divided by the opposite Y resistor.

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

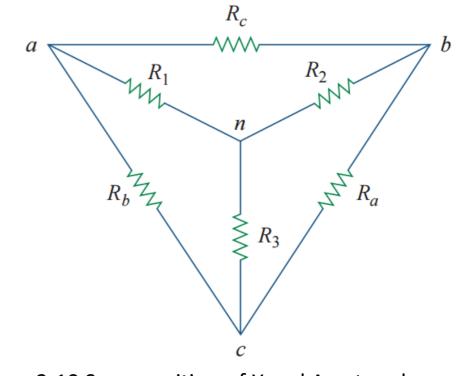


Figure 3-10 Superposition of Y and Δ networks as an aid in transforming one to the other

Wye-Delta Transformations

≻Note :-

• The **Y** and Δ network are said to be **balanced** when :

 $R_1 = R_2 = R_3$

And

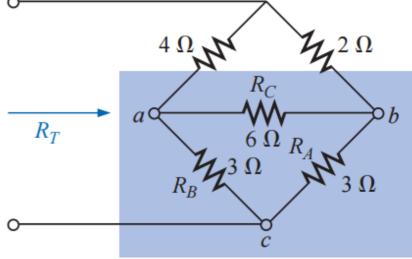
 $R_a = R_b = R_c$

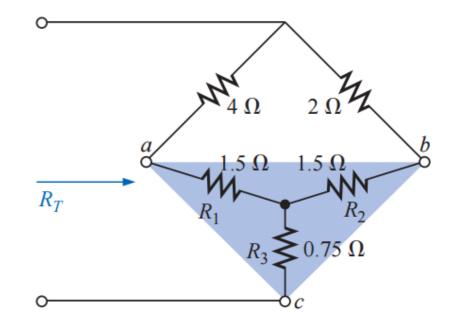
• Under balance condition, the convention equations become:

$$\boxed{R_{\mathbf{Y}} = \frac{R_{\Delta}}{3}}$$

$$V_{\mathbf{Y}} = \frac{V_{\Delta}}{\sqrt{3}}$$

$$R_{\Delta} = 3R_{\mathbf{Y}}$$

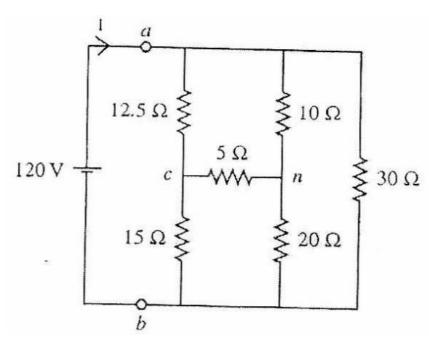

EX: Find the total resistance of the network of Figure below where $R_A = 3\Omega$, $R_B = 3\Omega$, and $R_C = 6 \Omega$.

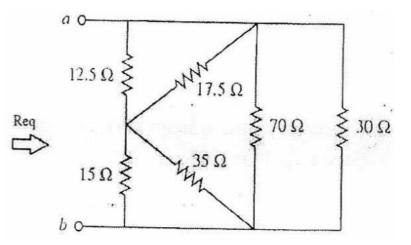

Solution:

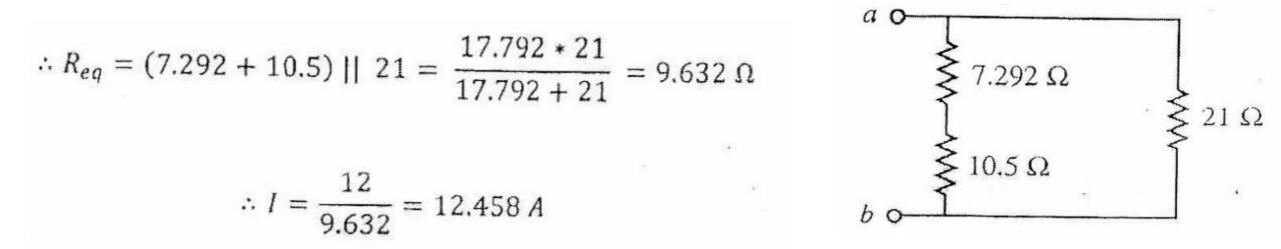
$$R_{1} = \frac{R_{B}R_{C}}{R_{A} + R_{B} + R_{C}} = \frac{(3 \Omega)(6 \Omega)}{3 \Omega + 3 \Omega + 6 \Omega} = \frac{18 \Omega}{12} = 1.5 \Omega \leftarrow R_{2} = \frac{R_{A}R_{C}}{R_{A} + R_{B} + R_{C}} = \frac{(3 \Omega)(6 \Omega)}{12 \Omega} = \frac{18 \Omega}{12} = 1.5 \Omega \leftarrow R_{3} = \frac{R_{A}R_{B}}{R_{A} + R_{B} + R_{C}} = \frac{(3 \Omega)(3 \Omega)}{12 \Omega} = \frac{9 \Omega}{12} = 0.75 \Omega$$

Replacing the Δ by the Y, as shown in Fig.

$$R_{T} = 0.75 \ \Omega + \frac{(4 \ \Omega + 1.5 \ \Omega)(2 \ \Omega + 1.5 \ \Omega)}{(4 \ \Omega + 1.5 \ \Omega) + (2 \ \Omega + 1.5 \ \Omega)}$$
$$= 0.75 \ \Omega + \frac{(5.5 \ \Omega)(3.5 \ \Omega)}{5.5 \ \Omega + 3.5 \ \Omega}$$
$$= 0.75 \ \Omega + 2.139 \ \Omega$$
$$R_{T} = 2.889 \ \Omega$$




EX: Find the current (I) for the circuit shown in figure below.


Solution: $I = \frac{E}{R_{eq}}$

If we convert the (**Y**) network comprising (5 Ω , 10 Ω and 20 Ω) resistors, then:

 $\frac{5*10+10*20+20*5}{20} = \frac{350}{20} = 17.5 \,\Omega$ $R_a =$ $R_b = \frac{350}{5} = 70 \ \Omega$ $R_c = \frac{350}{10} = 35 \ \Omega$ $12.5 \parallel 17.5 = \frac{12.5 * 17.5}{12.5 + 17.5} = 7.292 \Omega$ $15 \parallel 35 = \frac{15 * 35}{15 + 35} = 10.5 \Omega$ $70 \parallel 30 = \frac{70 * 30}{70 + 30} = 21 \Omega$

