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❑ INPUT IMPEDANCE OF TRANSMISSION LINE 

FIGURE 1 (a) Input impedance due to a line terminated 
by a load. (b) Equivalent circuit for finding Vo and Io in 
terms of Zin at the input.

❖ Consider a transmission line of length l ,characterized by 𝛾 and 𝑍0, 

connected to a load 𝑍𝐿 as shown in Figure 1 (a).

❖ Looking into the line, the generator sees the line with the load as an input 

impedance Zin. It is our intention in this section to determine the input 

impedance, the standing wave ratio (SWR), and the power flow on the line.

❖ Let the transmission line extend from z = 0 at the generator to z = l , at the 

load. First of all, we need the voltage and current waves in eqs. (1.1 ) and 

(1.2), that is,

𝑉𝑠 𝑧 = 𝑉0
+𝑒−𝛾𝑧 + 𝑉0

−𝑒𝛾𝑧     …………………(1.1)

𝐼𝑠 𝑧 =
𝑉0

+

𝑍0
𝑒−𝛾𝑧 −

𝑉0
−

𝑍0
𝑒𝛾𝑧…………………….…(1.2)

Where 𝑍0= 
𝑉0

+

𝐼0
+

❖ To find 𝑉0
+ and 𝑉0

− , the terminal conditions must be given. For example, if we are given the conditions at the input, say

𝑉0
 = 𝑉 𝑧 = 0 , 𝐼0

 = 𝐼 𝑧 = 0 ………………….(1.3)
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substituting these into eqs. (1.1) and (1.2) results in

𝑉0
+ =

1

2
(𝑉0

 + 𝐼0
 𝑍0)……………………(1.4a)

𝑉0
− =

1

2
(𝑉0

 − 𝐼0
 𝑍0)……………………(1.4b)

If the input impedance at the input terminals is Zin, the input voltage Vo and the input Current Io are easily obtained from 

Figure 1(b) as

𝑉0
 =

𝑍𝑖𝑛
 

𝑍𝑖𝑛
 +𝑍𝑔

 𝑉𝑔
 , 𝐼0

 =
𝑉𝑔

 

𝑍𝑖𝑛
 +𝑍𝑔

 … … … … … . . (1.5)

On the other hand, if we are given the conditions at the load, say

𝑉𝐿
 = 𝑉 𝑧 = 𝑙 , 𝐼𝐿

 = 𝐼 𝑧 = 𝑙 ………………….(1.6)

Substituting these into eqs. (1.1) and (1.2) gives

𝑉0
+ =

1

2
(𝑉𝐿

 + 𝐼𝐿
 𝑍0)𝑒𝛾𝑙……………………(1.7a)

𝑉0
− =

1

2
(𝑉𝐿

 − 𝐼𝐿
 𝑍0) 𝑒−𝛾𝑙 ……………………(1.7b)
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Next, we determine the input impedance 𝑍𝑖𝑛
 =

𝑉𝑠 𝑧

𝐼𝑠 𝑧
  at any point on the line. At the generator, for example, eqs. (1.1) and 

(1.2) yield

𝑍𝑖𝑛
 =

𝑉𝑠 𝑧

𝐼𝑠 𝑧
=

𝑍0 𝑉0
++𝑉0

−

𝑉0
+−𝑉0

− … … … … … … … … … . (1.8)

Substituting eq. (1.7) into (1.8) and utilizing the fact that

𝑒𝛾𝑙+𝑒−𝛾𝑙

2
=cosh𝛾𝑙, 

𝑒𝛾𝑙−𝑒−𝛾𝑙

2
=sinh𝛾𝑙 ……….(1.9a) Or     tanh 𝛾𝑙=

𝑠𝑖𝑛ℎ𝛾𝑙

𝑐𝑜𝑠ℎ𝛾𝑙
=    

𝑒𝛾𝑙−𝑒−𝛾𝑙

𝑒𝛾𝑙+𝑒−𝛾𝑙 ……….(1.9b)         We get 

𝒁𝒊𝒏
 = 𝒁𝟎

𝒁𝑳
 +𝒁𝟎𝒕𝒂𝒏𝒉𝜸𝒍

𝒁𝟎+𝒁𝑳
 𝒕𝒂𝒏𝒉𝜸𝒍

…….......(1.10) --for (lossy transmission line)

Although eq. (1.10) has been derived for the input impedance Zin at the generation end,

it is a general expression for finding Zin at any point on the line.

To find Zin at a distance 𝑙′ from the load as in Figure 1(a), we replace 𝑙 by  𝑙′  .
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A formula for calculating the hyperbolic tangent of a complex number, required in eq. (1.10), is found in Appendix I.

For a lossless line, 𝛾 = 𝐽𝛽, tanh𝑗𝛽𝑙= 𝑗𝑡𝑎𝑛𝛽𝑙, and Zo =Ro, so eq. (1.10) becomes

𝒁𝒊𝒏
 = 𝒁𝟎

𝒁𝑳
 +𝒋𝒁𝟎𝒕𝒂𝒏𝜷𝒍

𝒁𝟎+𝒋𝒁𝑳𝒕𝒂𝒏𝜷𝒍
……………….(1.11)  For lossless transmission line 

showing that the input impedance varies periodically with distance 𝑙 from the load. The quantity 𝛽𝑙 in eq. (1.11) is 

usually referred to as the electrical length of the line and can be expressed in degrees or radians.

❑ Reflection coefficient ( Γ )

We now define Γ𝐿 as the voltage reflection coefficient (at the load). The reflection coefficient Γ𝐿 is the ratio of the voltage 

reflection wave to the incident wave at the load; that is,

𝜞𝑳=
𝑽𝟎 

− 𝒆𝜸𝒍

𝑽𝟎
+ 𝒆−𝜸𝒍 ……………(1.12)
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Substituting 𝑉0
+ and 𝑉0

− in eq. (1.7) into eq. (1.12) and incorporating VL = ZL IL     gives

𝜞𝑳=
𝒁𝑳−𝒁𝟎

𝒁𝑳+𝒁𝟎
 … … (𝟏. 𝟏𝟑)

The voltage reflection coefficient at any point on the line is the ratio of the reflected voltage wave to that of the incident 

wave.

That is, 𝜞 (𝒁)=
𝑽𝟎 

− 𝒆𝜸𝒛

𝑽𝟎
+ 𝒆−𝜸𝒛 =

𝑽𝟎 
− 

𝑽𝟎
+ 𝒆𝟐𝜸𝒛

But 𝑧 = 𝑙 − 𝑙′. Substituting and combining with eq. (1.12), we get

𝜞 𝒁 =
𝑽𝟎 

− 

𝑽𝟎
+ 𝒆𝟐𝜸𝒍𝒆−𝟐𝜸𝑙′

 … … . (𝟏. 𝟏𝟒)

The current reflection coefficient at any point on the line is the negative of the voltage reflection coefficient at that 

point.
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Thus, the current reflection coefficient at the load is 𝑰𝟎 
− 𝒆𝜸𝒍

/ 𝑰𝟎 
+ −𝒆𝜸𝒍 = −𝜞𝑳

❑ Standing Wave Ratio (SWR)

we define the standing wave 

ratio as 

𝒔 =
𝑽𝒎𝒂𝒙

𝑽𝒎𝒊𝒏
 = 

𝑰𝒎𝒂𝒙

𝑰𝒎𝒊𝒏
 =

𝟏+ 𝜞𝑳

𝟏− 𝜞𝑳
 … … . . 𝟏. 𝟏𝟓𝒂

𝚪𝐋 =
𝒔−𝟏

𝒔+𝟏
    ………..(1.15b)

It is easy to show that Imax = Vmax/Zo and Imin = Vmin /Zo. The input impedance Zin in eq. (1.11) has maxima 

and minima that occur, respectively, at the maxima and minima of the voltage standing wave. It can also be shown 

that

𝐙𝒊𝒏 𝒎𝒂𝒙=
𝑽𝒎𝒂𝒙

𝑰𝒎𝒊𝒏
= s𝐙𝟎  … … … . .  (𝟏. 𝟏𝟔𝒂) 

𝒂𝒏𝒅 

𝐙𝒊𝒏 𝒎𝒊𝒏=
𝑽𝒎𝒊𝒏

𝑰𝒎𝒂𝒙
=

𝐙𝟎

𝑠
    ……………..(1.16b)

Standing wave ratio (SWR) is the ratio of the maximum magnitude or amplitude of a standing wave to its minimum 
magnitude. It indicates whether there is an impedance mismatch between the load and the internal impedance on 
a radio frequency (RF) transmission line, or waveguide.
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As a way of demonstrating these concepts, consider a 

lossless line with characteristic impedance of Zo=50 

V. For the sake of simplicity, we assume that the line 

is terminated in a pure resistive load ZL =100 V and 

the voltage at the load is 100 V (rms). The conditions 

on the line are displayed in Figure 2. Note from Figure 

2 that conditions on the line repeat themselves every 

half-wavelength.

FIGURE 2 Voltage and current standing wave patterns on a lossless 
line terminated by a resistive load.

❑ The average input power

The average input power at a distance 𝑙 from the load is 

given by the below  equation 

𝑃𝑎𝑣 =
1

2
 𝑅𝑒 𝑉𝑠 𝑙 𝐼∗

𝑠(𝑙)

where the factor
1

2
 is needed because we are dealing with the 

peak values instead of the rms values.
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Assuming a lossless line    we substitute eqs. (1.1) and (1.2) to obtain

Since the last two terms together become purely imaginary, we have

………….(1.18)

The first term is the incident power Pi, while the second term is the reflected power Pr. Thus eq. (1.18) 

may be written as

𝑷𝒕 = 𝑷𝒊 − 𝑷𝒓
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where Pt is the input or transmitted power and the negative sign is due to the negative going wave (since we take the reference 

direction as that of the voltage/current traveling toward the right). We should notice from eq. (1.18) that the power is constant 

and does not depend on 𝑙, since it is a lossless line. Also, we should notice that maximum power is delivered to the load 

when 𝜞=0 , as expected.

A. Shorted Line (𝒁𝑳 = 0)

𝐹𝑜𝑟 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒 𝑡ℎ𝑖𝑠 𝑒𝑞. 𝑍𝑖𝑛
 = 𝑍0

𝒁𝑳
 +𝒋𝒁𝟎𝒕𝒂𝒏𝜷𝒍

𝒁𝟎+𝒋𝒁𝑳𝒕𝒂𝒏𝜷𝒍
  will become 

𝒁𝑺𝑪  =  𝒁𝑺𝑪 ȁ 𝒁𝑳=𝟎= 𝒋𝒁𝟎𝒕𝒂𝒏𝜷𝒍  ……. (1.19)

Also, from eqs. (1.13) and (1.15) 𝚪𝐋 = −𝟏 , 𝒔 = ∞

We notice from eq. (1.19) that Zin is a pure reactance, which could be capacitive or inductive depending on the value of  𝑙. 
The variation of Zin with 𝑙  is shown in Figure 11.8(a).

B. Open-Circuited Line (𝒁𝑳 = ∞)

In this case, this eq. 𝑍𝑖𝑛
 = 𝑍0

𝒁𝑳
 +𝒋𝒁𝟎𝒕𝒂𝒏𝜷𝒍

𝒁𝟎+𝒋𝒁𝑳𝒕𝒂𝒏𝜷𝒍
      becomes

….(1.20)
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Also, from eqs. (1.13) and (1.15)

𝚪𝐋 = 𝟏 , 𝒔 = ∞

The variation of Zin with 𝑙 is shown in 

Figure 11.8(b). Notice from eqs. (1. 19) 

and (1.20) that

FIGURE 1.3 Input impedance of a lossless line: 
(a) when shorted, (b) when open.

𝒁𝒔𝒄𝒁𝒐𝒄 = 𝒁𝟎
𝟐 … … … … . . (𝟏. 𝟐𝟏)

C. Matched Line (ZL = Zo)

The most desired case from the practical point of view is the matched 

line i.e., ZL = Zo. For this case, this eq. 𝑍𝑖𝑛
 = 𝑍0

𝒁𝑳
 +𝒋𝒁𝟎𝒕𝒂𝒏𝜷𝒍

𝒁𝟎+𝒋𝒁𝑳𝒕𝒂𝒏𝜷𝒍
                                  

reduces to

Zin = Zo……..(1.22)

Also, from eqs. (1.13) and (1.15)

𝚪𝐋 = 𝟎 , 𝒔 = 𝟏
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that is, 𝑽𝟎 
− = 𝟎 ; the whole wave is transmitted, and there is no reflection. The incident power is fully absorbed by 

the load. Thus maximum power transfer is possible when a transmission line is matched to the load.

EXAMPLE 1

A certain transmission line 2 m long operating at 𝜔 = 106 𝑟𝑎𝑑/𝑠  and 𝛼 = 8
𝑑𝐵

𝑚
 , 𝛽 = 1

𝑟𝑎𝑑

𝑚
 and Zo=60+j40 Ω. If 

the line is connected to a source of 10∠00 V, Zg=40 Ω and terminated by a load of 20 + j50 Ω, determine

(a) The input impedance

(b) The sending-end current

(c) The current at the middle of the line

Solution:

(a) Since 1 Np = 8.686 dB,
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(b) The sending-end current is I(Z=0) = 𝐼0 From eq. (1.5),

(c) To find the current at any point, we need 𝑽𝟎
+ and 𝑽𝟎

− . But

From eq. (1.4),
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❑ THE SMITH CHART

The Smith chart is the most commonly used of the graphical techniques. It is basically a graphical indication of the 

impedance of a transmission line and of the corresponding reflection coefficient as one moves along the line

Used for calculations of transmission line characteristics such as 𝜞𝑳, s, and Zin.

By assuming that the transmission line to which the Smith chart will be applied is lossless (𝒁𝟎 = 𝑹𝟎)

The Smith chart is constructed within a circle of unit radius ( 𝚪𝐋 ≤ 𝟏) as shown in Figure 1.4.

FIGURE 1.4 Unit circle on which the Smith chart
is constructed.

𝜞𝑳=
𝒁𝑳−𝒁𝟎

𝒁𝑳+𝒁𝟎
 … … (𝟏. 𝟏𝟑)

The construction of the chart is based on the relation in eq. (1. 13); that is

or

𝜞 = 𝜞 ∠𝜽𝜞 = 𝜞𝒓 + 𝒋𝜞𝒊………………………(1.23)

where 𝜞𝒓 and 𝜞𝒊 are the real and imaginary parts of the reflection 

coefficient 𝜞 .
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Instead of having separate Smith charts for transmission lines with different characteristic impedances (e.g., Zo = 60, 100, 

120 Ω), we prefer to have just one that can be used for any line. We achieve this by using a normalized chart in which all 

impedances are normalized with respect to the characteristic impedance Zo of the particular line under consideration. For 

the load impedance 𝑍𝐿 , for example, the normalized impedance 𝑍𝐿 is given by

….(1.24)

Substituting eq. (1. 24) into eqs. (1. 13) and (1. 23) gives ….(1.25)

….(1.26)

or

Normalizing and equating real and imaginary components, we obtain

….(1.27) ….(1.28)
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Rearranging terms in eqs. (1. 27 & 28) leads to

….(1.29) and ….(1.30)
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FIGURE 5 Typical r-circles for r = 0, 0.5, 1, 2, 5, ∞.
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Appendix I
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