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O INPUT IMPEDANCE OF TRANSMISSION LINE

¢ Consider a transmission line of length ¢ ,characterized by y and Z,, 7, - z L
connected to a load Z;, as shown in Figure 1 (a). It

0%, o) —~Zy I L

¢ Looking into the line, the generator sees the line with the load as an input
Impedance Zin. It is our intention in this section to determine the input
Impedance, the standing wave ratio (SWR), and the power flow on the line.
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¢ Let the transmission line extend from z = 0 at the generator to z = ¢, at the

load. First of all, we need the voltage and current waves in egs. (1.1 ) and
(1.2), that is,

I/S(Z) - V0+e_yz + Vo_eyz ..................... (11) ) . .
FIGURE 1 (a) Input impedance due to a line terminated
by a load. (b) Equivalent circuit for finding Vo and lo in

N - f Zi hei .
I.(z) = Z_(;e vz _ 20 (1.2) terms of Zin at the input

Vo
Where Z= o
0

< To find V4" and V; , the terminal conditions must be given. For example, if we are given the conditions at the input, say

Vo=V(Zz=0)Iy=1(Z=0) . (1.3)
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substituting these into egs. (1.1) and (1.2) results in

If the input impedance at the input terminals is Zin, the input voltage Vo and the input Current lo are easily obtained from
Figure 1(b) as
Vy=lin_y = | =9

) 0~ .
Zint+Zg g Zint+Zg

oo (1.5)

On the other hand, if we are given the conditions at the load, say
VL == V(Z == l),IL == I(Z == l) ...................... (16)
Substituting these into eqgs. (1.1) and (1.2) gives

V0+ == %(VL-I- IL Zo)eyl ........................ (1.7a)



Vs(2)
Is(2)

Next, we determine the input impedance Z;,,=
(1.2) yield

_Vs(z) _ ZO(V0++V0_)
in_IS(Z) - (Vo+—VO_) Eer owEn maw was

e (1.8)

Substituting eq. (1.7) into (1.8) and utilizing the fact that

e¥lye vl e¥l_e~vl

- vi_e-vi
:COSh)/l, sinhyl e e

=sinhyl .......... (1.9a) Or tanhyl=

coshyl  eYlte~vl

ZL+Z°tanhyl] ............. (1.10) --for (lossy transmission line)

y A=
in™ #0 |7,+Z,tanhyl

Although eqg. (1.10) has been derived for the input impedance Zin at the generation end,
it is a general expression for finding Zin at any point on the line.

To find Z.at a distance I’ from the load as in Figure 1(a), we replace l by [ .
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at any point on the line. At the generator, for example, egs. (1.1) and

We get



A formula for calculating the hyperbolic tangent of a complex number, required in eg. (1.10), is found in Appendix 1.

For a lossless line, y = JB, tanhjfl= jtanfl, and Zo =Ro, so eq. (1.10) becomes

ZL+jZOtanﬁl]

Z; = [ ................... 1.11) For lossl ransmission lin
in= 20 |7 7, tanpl ( ) For lossless transmissio e

showing that the input impedance varies periodically with distance [ from the load. The quantity £l in eq. (1.11) is
usually referred to as the electrical length of the line and can be expressed in degrees or radians.

[ Reflection coefficient (I')

We now define I'; as the voltage reflection coefficient (at the load). The reflection coefficient I} is the ratio of the voltage
reflection wave to the incident wave at the load; that is,
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Substituting V" and V™ in eq. (1.7) into eq. (1.12) and incorporating Vi= Z. /. gives
0 0

The voltage reflection coefficient at any point on the line is the ratio of the reflected voltage wave to that of the incident
wave.

: o v,
That is, r (Z)=V+0e—yz = -0 g2z
0

But z = [ — I'. Substituting and combining with eq. (1.12), we get

14 :
r (Z):V—ﬂeZY’e—Zyl e (1.14)
0

The current reflection coefficient at any point on the line is the negative of the voltage reflection coefficient at that
point.



Thus, the current reflection coefficient at the load is I3 ¢ /I3 ~¢" = —r;

1 Standing Wave Ratio (SWR)

Standing wave ratio (SWR) is the ratio of the maximum magnitude or amplitude of a standing wave to its minimum
magnitude. It indicates whether there is an impedance mismatch between the load and the internal impedance on
a radio frequency (RF) transmission line, or waveguide.

Vimax _ Imax 1+|I'y|
- - S = = - v .. (1.15a
we define the standing wave Viin  Imin 1-|Iy| ( )
ratio as
s—1
I S s (1.15b)

It is easy to show that /max = Wmax/20 and /min = VMmin /20. The input impedance Zin in eq. (1.11) has maxima
and minima that occur, respectively, at the maxima and minima of the voltage standing wave. It can also be shown
that

Vinax
|Zin|max:m = SZO che eee wee s (1 1661)
and

Vmin ZO
|Zin|min=m — ? ................. (1.16b)
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As a way of demonstrating these concepts, consider a vl .
lossless line with characteristic impedance of 20=50
V. For the sake of simplicity, we assume that the line
Is terminated in a pure resistive load ZL =100 V and
the voltage at the load is 100 V (rms). The conditions
on the line are displayed in Figure 2. Note from Figure
2 that conditions on the line repeat themselves every
half-wavelength.

o daa
A The average input power /\/_\

The average input power at a distance [ from the load is
given by the below equation -

— 50V

B {radians} e

1
Pav — E Re [Vg(l)l*s(l)] L Uwavelength) A4

o | et

il =
=

1. ; ;
Where the factor E IS needEd because WE are dealmg Wlth the FIGURE 2 Voltage and current standing wave patterns on a lossless
peak values instead Of the rms ValueS. line terminated by a resistive load.
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Assuming a lossless line we substitute egs. (1.1) and (1.2) to obtain

P,.= lEELIE: V(e + I'E_J"E'*}E{E—Jﬂf — Te®)
z Z

o

! [IVJF

= —Re (1 — |T|* + Te Pt — F*EE’I'E{}]
2 |z

Since the last two terms together become purely imaginary, we have

i
. |1"i- |

Pe = —2— (1 - IT|2) evvreennnnn(1.18)

The first term is the incident power P/, while the second term is the reflected power Ar. Thus eg. (1.18)
may be written as

P,=P; - P,
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where Ptis the input or transmitted power and the negative sign is due to the negative going wave (since we take the reference
direction as that of the voltage/current traveling toward the right). We should notice from eq. (1.18) that the power is constant
and does not depend on [, since it is a lossless line. Also, we should notice that maximum power is delivered to the load
when I'=0 , as expected.

A. Shorted Line (Z; = 0)

Z;+jZytanpl
Zo+jZtanfl
ZSC — ZS'C |ZL=0:jZ0tanﬁl ....... (119)

Also, from egs. (1.13) and (1.15) [ =—1,s =

For this case this eq.Z;,,= Z, [ ] will become

We notice from eq. (1.19) that Zin is a pure reactance, which could be capacitive or inductive depending on the value of L.
The variation of Zin with [ is shown in Figure 11.8(a).

B. Open-Circuited Line (Z; = o)

In this case, this eq. Z,,,= Z, lzﬁjzownm]

Zo+jZtanpl becomes Zo

Z_ = lim Z, = = —jZ cotPl  ...(1.20
ELE:-: jtan Bf o cot (1.20)
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Also, from egs. (1.13) and (1.15)
[L=1,s=0
The variation of Zin with [ is shown in

Figure 11.8(b). Notice from eqgs. (1. 19)
and (1.20) that

ZoZoe=2Z5.............(1.21)

C. Matched Line (ZL = Z0)

The most desired case from the practical point of view is the matched

line i.e., ZL = Zo. For this case, this eq. Z;,,= Z, [ZLZ?’ZZZ]
0 L

reduces to

Zin = Zo........ (1.22)
Also, from egs. (1.13) and (1.15)

Inductive

Capacitive
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FIGURE 1.3 Input impedance of a lossless line:

(a) when shorted, (b) when open.
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that is, Vi, = 0 ; the whole wave is transmitted, and there is no reflection. The incident power is fully absorbed by
the load. Thus maximum power transfer is possible when a transmission line is matched to the load.

EXAMPLE 1
rad

A certain transmission line 2 m long operating at w = 10° rad/s and a = 8%3 0= 17 and Zo=60+j40 Q. If
the line is connected to a source of 1020° V, Zg=40 Q and terminated by a load of 20 + j50 €, determine

(a) The input impedance
(b) The sending-end current
(c) The current at the middle of the line

_— 8
Solution: = —— = 0.921 Np/m

“ 7 8686
(a) Since 1 Np = 8.686 dB, y—a+iB=0921 + jl /m

w6 =2(0921 +j1) = 184 + 2
Using the formula for tanh{x + jy) in Appendix A.3, we obtain

tanh y{ = 1.033 — j0.03929

2+ Z_tanh w(
Ei:|'| = En( : - L )
Z, + Z; tanh yf

20 + j50 + (60 + j40)(1.033 — j0.03929
— (60 +},4G}[ j50 + (60 + j40)( j }}

60 + j40 + (20 + j50)(1.033 — j0.03929)
Zp = 6025 + j38.79 Q



(b) The sending-end current is [(Z=0) = Iy From eq. (1.5),

Ve o 10
Zn + Z, 6025 + j38.79 + 40

= 33.03/—21.15° mA

{z=0)=

(c) To find the current at any point, we need V{ and Vg . But

I, = I{z = 0) = 93.03/—21.15° mA
V, = Zyl, = (71.66 /32.77°)(0.09303 /—21.15°) = 6.667 /11.62° V

From eq. (1.4),

1
T"'r;- = E(vn - Enfn}
1
= E[E.ﬁﬁ? /11.62° + (60 + j40)(0.09303 / —21.15°)] = 6.687 / 12.08°
1 .
Vo =7 (Ve — Z,1,) = 0.0518 /260

At the middle of the line, z = €/2, yz = 0.921 + jl. Hence, the current at this point is

I = —f 2] = 0 yr 0 g
s(z -I'I J E:, £ En e
_ (ﬁhﬁg?eﬂiﬂrje—ﬂ_ﬂ]—}l [ﬂa{]EIBE‘rEEDu}EUQII+-FI
60 + j40 60 + 40

Note that jl is in radians and is equivalent to j57.3° Thus,

E.EETEJJlDEuE_ﬂEzlE_’IE?jq B D.'}SIEE}H’ED.DE lg_rfr?_?"

72,13 72.1e

I(z = £12) =

= 0.036%9¢ 751" — 000180518340
= 6.673 — j34.456 mA
= 35.10,/281° mA
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d THE SMITH CHART

The Smith chart is the most commonly used of the graphical techniques. It is basically a graphical indication of the
impedance of a transmission line and of the corresponding reflection coefficient as one moves along the line

Used for calculations of transmission line characteristics such as I'y, s, and Zin.
By assuming that the transmission line to which the Smith chart will be applied is lossless (Zyg = R)

The Smith chart is constructed within a circle of unit radius (|I.| < 1) as shown in Figure 1.4.

The construction of the chart is based on the relation in eq. (1. 13); that is I

_Z1—Z
17,52, " (1.13)
or
F'=|I' 40 =T, +jI;  ceeeeeerenne (1.23)

where I',. and I'; are the real and imaginary parts of the reflection
coefficient I' .

FIGURE 1.4 Unit circle on which the Smith chart
is constructed.
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Instead of having separate Smith charts for transmission lines with different characteristic impedances (e.g., Zo = 60, 100,
120 Q), we prefer to have just one that can be used for any line. We achieve this by using a normalized chart in which all
Impedances are normalized with respect to the characteristic impedance Zo of the particular line under consideration. For

the load impedance Z; , for example, the normalized impedance Z; is given by

4y (1.24)
&y = —=r X U N
z,
Substituting eq. (1. 24) into egs. (1. 13) and (1. 23) gives [T <= z — i (1.25)
' Z, T
or
y — p 4 J".E'— [1 _rr;l +jrj
- T (1-T,) =T, ...(1.26)
Normalizing and equating real and imaginary components, we obtain
Sk Yl ¥ : ....(1.28)

~h-ty.n -2 TTU-Ty+T



Rearranging terms in eqs. (1. 27 & 28) leads to

rj—111=[lT ....(1.30)

2 ] 2
+ I = L N J ...(1.29) and L, —1F +

| p—|
=
-
I

o

4+ | =

-
—_

ol

Each of egs. (11 ~ Yand (1 .} is similar to
(x—h)P+ (y— k2=

which is the general equation of a circle of radius @, centered at (h, k). Thus eq. (11.50) is
an r-circle (resistance circle) with

TABLE 1 Radi and Centers of r-Circles for Typical Values of r

center at (I', ;) = (1 _T_ - EI)

F 4 r
Normalized Resistance (r) Radius ( ) Center ( : [I')
1+r 1+r

1
radius =
1 +r
] | (0, o)
172 23 (1/3, D)
| 1/2 (1/2,0)
2 1/3 (2/3,0)
5 1/6 (5/6, 0)
oo 0 (1,0)
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FIGURE 5 Typical r~circles for r=0,0.5, 1, 2, 5, co.
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Appendix |

HYPERBOLIC FUNCTIONS

- - E+e T
cosh x = B

sink x ==

b

tanh x = sinh x oothx = :

cosh x’ tanh x

csch : ch !
T Sinhr = sh x
sin fx = | sinh x, CO5 [X = cosh X

sinh fx = Isinx, Cosh fx = cosx

sinh (x = ¥) = sinh x cosh ¥ = cosh x sinh ¥
cosh (x = y) = cosh xcosh y = sinh x sinh ¥
sinh {x = f¥) = sinh x cos ¥ = {cosh x sin y

cosh {x = Jy) = cosh xcos ¥ = [ sinh x sin y

sinh Xx . sin 2y

tanh {x = v} = cosh 2x + cos 2y _'ri:ush.'-‘_t =+ o5 2y
cosh® x — sinh™ x = |
sech® x + tanh® x = 1
sin(x =y} = sinxcashy = fcos xsinh ¥

cos (x = Jy) = cosxcosh ¥ = [sin xsinh y
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