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1. Transmission lines

A Transmission line is a mechanism of guiding electrical energy from one place to another. (or) Transmission line
IS an electrical line which is used to transmit electrical waves from one point to another. Eg: i. Transfer of RF
energy from transmitter to antenna. ii. Transmission lines can also be used as impedance transformers.

2. Transmission Line Equivalent circuit

A transmission line is a two-port network, with each port consisting of two terminals, as illustrated in Fig.1. One
of the ports, the line’s sending end, is connected to a source (also called the generator). The other port, the line’s
receiving end, is connected to a load.
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2.1 Lumped-element circuit of coaxial line

the  lumped-element  circuit
model, consists of four basic
elements with values that
henceforth will be called the
transmission line parameters.
These are:

* R": The combined resistance of
both conductors per unit length,
in Q/m,

« L. The combined inductance
of both conductors per unit
length, in H/m,

« G’ The conductance of the
insulation medium between the
two conductors per unit length,
in S/m, and

« C'": The capacitance of the two
conductors per unit length, in
F/m.
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(c) Each section 1s represented by an equivalent circuit

Fig.2



2.2 TRANSMISSION LINE PARAMETERS

To describe a transmission line in terms of its line parameters, which are its resistance per unit length R, inductance per
unit length L, conductance per unit length G, and capacitance per unit length C. Each of the lines shown in Figure 3 has
specific formulas for finding R, L, G, and C.

For coaxial, two-wire, and planar lines,
the formulas for calculating the values of
R, L, G, and C are provided in Table 1.
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TABLE 1 Distnbuted Line Parameters at High Frequencies*

Parameters Coaxial Line Two-Wire Line Planar Line
R(0y/m) 1 1 1} 1 2
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a 2a Typical transmission lines in cross-sectional view: (a)
5= ®=skjndepﬂ1m'the cnnducmr;cnsh"%n-lngif[%]zm-l. coaxial line, (b) two-wire line, (c) planar line, (d)

wire above conducting plane, (e) microstrip line.



1. The line parameters R, L, G, and C are not discrete or lumped. Rather, they are distributed as shown in Figure 4. By this
we mean that the parameters are uniformly distributed along the entire length of the line.

2. For each line, the conductors are characterized by o, u.& =2, and

Series f and L
the homogeneous dielectric separating the conductors is characterized by

= T
g, W €. (]‘_T‘"’*‘h‘”r‘rrﬂr"'ﬂ-"‘"‘v‘v--1-"'33¥‘“1---‘v‘f‘f——r—
t T T T T T
| i 1
Shune 7 and & 1 I | I | :
N | 1 | L |
- . . . - adm wda < -
3. G # 1/R; Ristheac resistance per unit length of the conductors comprising the line, P " 2 7 :{_ T*
: : . : ; : |
and G is the conductance per unit length due to the dielectric medium separating | 1 | |
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the conductors.

4, The value of L shown in Table 11.1 is the external inductance per unit length, that
is, L = L. The effects of internal inductance L, (= R /e ) are negligible at the high
frequencies at which most communication systems operate. _

5. For each line, Fig.4
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FIGURE 5 Common transmission lines: (a) coaxial line,
(b) two-wire line, (c) planar line.



As a way of preparing for the next section, let us consider how an EM wave propagates through a two-conductor
transmission line. For example, consider the coaxial line connecting the generator or source to the load as in Figure
6 (a). When switch S is closed, the inner conductor is made positive with respect to the outer one so that

the E field is radially outward as in Figure 6 (b). According to
Ampere’s law, the H field encircles the current-carrying
conductor as in Figure 6 (b).

The Poynting vector (E x H) points along the transmission line.
Thus, closing the switch simply establishes a disturbance, which
appears as a transverse electromagnetic (TEM) wave
propagating along the line. This wave is a nonuniform plane
wave, and by means of it, power is transmitted

through the line.
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FIGURE 6 (a) Coaxial line connecting the generator to the load;
(b) E and H fields on the coaxial line.



2.3 TRANSMISSION LINE EQUATIONS

A two-conductor transmission line supports a TEM wave; that is, the electric and magnetic fields on the line are
perpendicular to each other and transverse to the direction of wave propagation. An important property of TEM waves is
that the fields E and H are uniquely related to voltage V and current I, respectively:

V=—]‘E-d1, I=§;H-d1 (1 2)
L

L

we will use circuit quantities V and | in solving the transmission line problem instead of solving field quantities E and H

Let us examine an incremental portion of length Vz of a two-conductor transmission line.
The model in Figure 7 is in terms of the line parameters R, L, G, and C, and may represent any of the two-conductor lines

The model is called the L-type equivalent circuit; there are other possible types

In the model of Figure 7, we assume that the wave propagates along the +z-direction, from the generator to the load.

By applying Kirchhoff ’s voltage law to the outer loop of the circuit in Figure 7, we obtain



fiz, sy HRaz Lz .H + .a_'..— ,-] Y = propagation constant

° MA—TTT f = the phase constant (in radians per meter).
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; To lond u = wave velocity
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FIGURE 7 An L-type equivalent circuit model of a two- y=a+ jf= V(R + joL)(G + jwC)

conductor transmission line of differential length Vz.
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where V, V, I7, and I are wave amplitudes; the + and — signs, respectively, denote
waves traveling along +z- and —z-directions, as is also indicated by the arrows. We obtain
the instantaneous expression for voltage as

V(z, t) = Re[V.(z) e™']
Vi e ™ coslowt — PBz) + V, e cos(wt + Pz)

The characteristic impedance 2% of the line is the ratio of the positively traveling voltage wave to the current wave at any
point on the line.

The characteristic impedance Zo is analogous to 1, the intrinsic impedance of the medium of wave propagation.

Vi  V; R+4jel Iu"H + jwl
I: I; Y G—'_;‘ml‘.:' E':' 1I||IIII G +_lr{.l;l'|:: _

where R, and X are the real and imaginary parts of Z_. Do not mistake R, for R—while
R is in ohms per meter, R, is in ohms. The propagation constant 7y and the characteristic
impedance Z, are important properties of the line because both depend on the line param-
eters R, L, G, and C and the frequency of operation. The reciprocal of Z_ is the characteristic
admittance Y, thatis, ¥, = 1/Z,.



A. Lossless Line (R =0 = G)

A transmission line is said to be lossless if the conductors of the line are perfect
(. = == ) and the dielectric medium separating them is lossless (o = 0).

For such a line, it is evident from Table 1.1 that when o, = 20 and & = 0,

R=0=G

This is a necessary condition for a line to be lossless. Thus for such a line, eq. (11.20) forces
eqs. (11.11), (11.14), and (11.19) to become

a=0, y=jf=jwVLC (11.21a)

(11.21b)

L
_a=m;g=m=ﬂg (11.21¢)



B. Distortionless Line (R/L = G/C)

A signal normally consists of a band of frequencies; wave amplitudes of different frequency
components will be attenuated differently in a lossy line because o is frequency dependent.
Since, in general, the phase velocity of each frequency component is also frequency depen-

dent, this will result in distortion.

A distortionless line is one in which the attenuation constant & is frequency indepen-

dent while the phase constant 2 is linearly dependent on frequency.

From the general expression for & and 8 [in eq. (11.11}], a distortionless line results if the

line parameters are such that

R_G
L C

Thus, for a distortionless line,

or

(11.22)

(11.23a)

showing that o does not depend on frequency, whereas 8 is a linear function of frequency. Also

_\/R{L+ijIR}_ E_ L_pot
*"VNe(l+jwcic) NG Ng~ M7

ar
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Ry=+|==+/= X,=0 11.23b
* Ng ‘Jc (11.23b)
and
e__L _n (11.23¢)
U=—=——= 23¢
B WVIC

Note the following important properties.

1. The phase velocity is independent of frequency because the phase constant 8
linearly depends on frequency. We have shape distortion of signals unless v and u
are independent of frequency.



TABLE 1.2 Transmussion Line Characteristics
Case Propagation Constant Characteristic Impedance
¥y=a+jp Zo =Ry +jX,

General VIR + jul)(G + jwC) (R + jwl

VG + jwC
Lossless 0+ jwVLC I'E o

| J

N

Distortionless VRG + N LC i
jurv JE ‘0

2. Both u and Z, remain the same as for lossless lines.

3. A lossless line is also a distortionless line, but a distortionless line is not necessarily
lossless. Although lossless lines are desirable in power transmission, telephone lines
are required to be distortionless.

A summary of our discussion in this section is in Table 11.2. For the greater part of our
analysis, we shall restrict our discussion to lossless transmission lines.

Example 1

An air line has a characteristic impedance of 70 {1 and a phase constant of 3 rad/m at
100 MHz. Calculate the inductance per meter and the capacitance per meter of the line.

Solution:

An air line can be regarded as a lossless line because o = 0 and &, — =, Hence

R=0=G and a=10

L
Zy = Ro =+ (11.1.1)
B=wVLC (11.1.2)

Dividing eq. (11.1.1) by eq. (11.1.2) yields

R
B

1
w i
Or

B 3
wR, 2@ ¥ 100 % 10°(70)

C= = 68.2 pF/m
From eq. (11.1.1),

L =R = (70)*(68.2 x 107"} = 3342 nH/m




Example 2

A distortionless line has Z, = 60 Q, & = 20 mNp/m, u = 0.6¢, where ¢ is the speed of

light in a vacuum. Find R, L, G, C, and A at 100 MHz.

Solution:

For a distortionless line,

REC=GL or = —
and hence
L
i
(] 1." C‘
oa=%VRERG=R
or
R=aZ,
But
€ 1
“=_=_
B “ic

From eq. (11.2.2b),

B=aZ,= (20 x 107%)(60) = 1.20/m

Dividing eq. (11.2.1) by eq. (11.2.3) results in

(11.2.1)

(11.2.2a)

(11.2.2b)

(11.2.3)

From eq. (11.2.2a),

Multiplying eqgs. (11.2.1) and (11.2.3) together gives

1
us, = c
or
©= quZD T 06(3 xl 10°) 60
Aot 0.6 (3 x 10%)
f 10°

= 92.59 pF/m

= 1.3 m
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