Marginal Entropy: Note that $P(Y_j/X_i) \neq P(X_i/Y_j)$ In fact, $P(Y_j/X_i)$ gives the prob of Yj given Xi is transmitted, while $P(X_i/Y_j)$ the prob of Xi given the Yj is received. ## Properties of I(Xi, Yi): - 1. I(Xi, Yi) is symmetric i.e. I(Xi, Yi) = I(Yi, Xi) - 2. **I(Yi, Xi)** > **0**, if a posterior prob. > priori prob. Then Yi provides +ve information about Xi. - 3. I(Yi, Xi) = 0, if a posterior prob. = priori prob. Then Yi provides no information about Xi. - 4. I(Yi, Xi) < 0, if a posterior prob. = priori prob. Then Yi provides or adds ambiguity (fuzzy) to Xi. ## **Marginal Entropy:** A term usually used to denote both **source entropy H(X)** & **receiver entropy H(Y)**. $$H(X) = -\sum_{i=1}^{n} P(X_i) \log_2 P(X_i)$$ (bits/symbol) $$H(Y) = -\sum_{j=1}^{m} P(Y_j) \log_2 P(Y_j)$$ (bits/symbol) $$Margins of Channel$$ ## **Joint & Conditional Entropies and Transinformation** The average amount of information associated with the pair (Xi, Yi) is called joint (system) entropy.: $$H(X,Y) = H(XY) = -\sum_{j=1}^{m} \sum_{i=1}^{n} P(X_i, Y_j) \log_2 P(X_i, Y_j)$$ The average amount of information associated with the pair $(X_i/Y_i) & (Y_i/X_i)$ are called conditional entropy. $$H(Y/X) = -\sum_{j=1}^{n} \sum_{i=1}^{n} P(xi, yj) \log_2 P(yj/xi)$$ $$= \text{Noise Entropy} \quad \text{bits/symbol}$$ $$H(X/Y) = -\sum_{i=1}^{m} \sum_{i=1}^{n} P(xi, yj) \log_2 P(xi/yj) = \text{Losses Entropy} \quad \text{bits/symbol}$$ # **Transinformation (Average Mutual Information):** It is the Average mutual information, this is statical average of all pairs $I(x_i, y_i)$ and it is measured by bits/symbol. $$I(X,Y) = \sum_{j=1}^{m} \sum_{i=1}^{n} I(x_i, y_j) P(X_i, Y_j)$$ $$I(X,Y) = \sum_{j=1}^{m} \sum_{i=1}^{n} P(X_i, Y_j) \log_2 \frac{P(X_i/Y_j)}{P(X_i)}$$ $$I(X,Y) = \sum_{j=1}^{m} \sum_{i=1}^{n} P(X_i, Y_j) \log_2 \frac{P(Y_j/X_i)}{P(Y_j)}$$ **Example:** Show that H(X,Y) = H(X) + H(Y/X) **Solution:** But P(XI, YJ) = P(XI).P(YJ/XI). Put this inside the log term only $$= -\sum_{i=1}^{n} \sum_{i=1}^{n} P\left(X_{i}, Y_{j}\right) \log_{2} P\left(X_{i}, Y_{j}\right)$$ $$= -\sum_{j=1}^{m} \sum_{i=1}^{n} P\left(X_{i}, Y_{j}\right) \log_{2} P\left(X_{i}, Y_{j}\right)$$ $$H(X,Y) = -\sum_{j=1}^{m} \sum_{i=1}^{m} P\left(X_{i}, Y_{j}\right) \log_{2} P\left(X_{i}\right) P(Y_{j}/X_{i})$$ $$H(X,Y) = -\sum_{j=1}^{m} \sum_{i=1}^{n} P(X_i, Y_j) \log_2 P(X_i) - \sum_{j=1}^{m} \sum_{i=1}^{n} P(X_i, Y_j) \log_2 P(Y_j/X_i)$$ If we reverse the first sum for i and j then $\sum_{i=1}^{n} P(X_i, Y_j) = P(X_j)$ $$H(X,Y) = -\sum_{i=1}^{n} P(X_i) \log_2 P(X_i) - \sum_{j=1}^{m} \sum_{i=1}^{n} P(X_i, Y_j) \log_2 P(Y_j/X_i)$$ $$H(X,Y) = H(X) + H(Y/X)$$ **Homework:** 1. show that H(X,Y)=H(Y)+H(X/Y). 2. show that I(X,Y)=H(X)-H(X/Y) 3. show that I(X,Y)=H(Y)-H(Y)H(Y/X) #### **Entropies** **Example:** Show that I(X,Y)=H(X)-H(X/Y). **Solution:** We know that $$I(Xi, Yj) = \sum_{j=1}^{m} \sum_{i=1}^{n} P(xi, yj) \log_{2} \frac{P(xi/yj)}{P(x_{i})}$$ $$= \sum_{j=1}^{m} \sum_{i=1}^{n} P(xi, yj) \log_{2} P(xi/yj) - \sum_{j=1}^{m} \sum_{i=1}^{n} P(xi, yj) \log_{2} P(x_{i})$$ As before, we reverse the order of the 2nd sum for i and j then $\sum_{j=1}^{m} P(xi, yj) = P(xi)$ then:- $$I(X,Y)=H(X)-H(X/Y)$$. **Note** that above identity indicates that the Transinformation I(X,Y) is the average information gained at the Rx which is the difference between the information produced by the source H(x) and the information lost in the channel H(X/Y) [losses entropy] due to noise and jamming. **Example:** Show that **I(X,Y)= 0** for extremely noisy channel? **Solution:** For extremely noisy channel, Then y_j gives no information about x_i (the Rx can not decide anything about x_i as if we transmit a deterministic signal x_i but the Rx receives noise like signal y_j that is completely has no correlation with x_i . Then x_i and y_i are independent and $P(xi / yj) = P(x_i)$ for all i and j then $I(x_i, y_j) = log_2 1 = 0$ for all i and j then I(X,Y) = average of $I(x_i, y_j) = 0$. ## **Examples** **Example:** The joint probability is given by Find: - 1. Marginal entropies 2. System Entropies - 3. Noise and losses entropies 4. Mutual information between X1 and Y2 - 5. Transinformation and 6. Draw the channel model $$= \begin{bmatrix} P(Xi, Yj) \\ 0.5 & 0.25 \\ 0 & 0.125 \\ 0.0625 & 0.0625 \end{bmatrix}$$ #### **Solution:** **1.** Marginal entropies (H(X) and H(Y)) $$P(X_j) = \sum_{j=1}^{\infty} P(X_j i, Y_j j) = [0.75 \quad 0.125 \quad 0.125]$$ $$P(Y_j) = \sum_{i=1}^{3} P(X_i, Y_j) = [0.5625 \quad 0.4375]$$ $$H(X) = -\sum_{i=1}^{3} P(X_i) \log_2 P(X_i) = \frac{1}{Ln(2)} [0.75 Ln(0.75) + 2 \times 0.125 Ln(0.125)] = 1.06127 bits/symbol$$ $$H(Y) = -\sum_{i=1}^{2} P(Y_i) \log_2 P(Y_i) = \frac{1}{Ln(2)} \left[0.5625 \ Ln(0.5625) + 0.4375 \ Ln(0.4375) \right] = 0.9887 \ bits/symbol$$ **2.** $$H(X,Y) = -\sum_{j=1}^{2} \sum_{i=1}^{3} P(X_i, Y_j) \log_2 P(X_i, Y_j)$$ $$= \frac{1}{Ln~(2)} \left[0.5 Ln~(0.5) + 0.25 \ln(0.25) + 0.125 Ln~(0.125) + 2 \times 0.0625 Ln~(0.0625) \right] = 1.875 ~bits/symbols$$ #### **Examples** **Solution: Cont.** 3. Noise and losses entropies H(Y/X)= H(X,Y) - H(X) = $$1.875 - 1.06127 = 0.81373$$ bit/symbol. (Noise Entropy) H(Xi ,Yj) 0.5 0.5 0.125 H(X/Y)= H(X,Y) - H(Y) = $1.875 - 0.9887 = 0.8863$ bit/symbol. (Losses Entropy) **4**. Mutual information between X₁ and Y₂ $$I(X_1, Y_2) = Log_2 \frac{P(X_1/Y_2)}{P(X_1)} = \frac{\text{since } P(X_1/Y_2)}{P(Y_2)} = \frac{P(X_1, Y_2)}{P(Y_2)} \text{ then}$$ $$I(X_1, Y_2) = Log_2 \frac{P(X_1, Y_2)}{P(X_1)P(Y_2)} = Log_2 \frac{0.25}{0.75 \times 0.4375} = -0.3923 \text{ bits . That means } Y2gives \text{ ambiguity about } X1$$ - **5.** Transinformation I(X,Y)=H(X)-H(X/Y)=0.17497bits/symbol - **6.** To draw a channel, we need to find $P(Y_i/X_i)$ $$P(Y \textbf{\textit{j}} / X \textbf{\textit{i}}) = \frac{P(X \textbf{\textit{i}}, Y \textbf{\textit{j}})}{P(X \textbf{\textit{i}})} = \begin{bmatrix} \frac{0.5}{0.75} & \frac{0.25}{0.75} \\ 0 & \frac{0.125}{0.125} \\ \frac{0.0625}{0.125} & \frac{0.0625}{0.125} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$ EE426 Information Theory ## Binary symmetric channel **Example:** Find and plot the transinformation for a binary symmetric channel (BSC) shown if $P(0_T = P(1_T) = 1/2$. **Solution:** We need to find I(X,Y) = H(Y) - H(Y/X). This BSC is a very well-known channel and Practical values for Pe $\ll 1$. $0_T = x_1$, $1_T = x_2$, $0_R = y_1$ and $1_R = y_2$ $$P(Y/X) = \begin{bmatrix} 1-Pe & Pe \\ Pe & 1-Pe \end{bmatrix}$$ $$P(X,Y) = \begin{bmatrix} \frac{1-Pe}{2} & \frac{Pe}{2} \\ \frac{Pe}{2} & \frac{1-Pe}{2} \end{bmatrix} \rightarrow P(Y) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \text{ and } H(Y) = H(Y)_{\text{max}} = \log_2 2 = 1$$ bits $$\begin{aligned} \mathsf{H}(\mathsf{Y/X}) &= -\sum_{j=1}^{m} \sum_{i=1}^{n} \mathsf{P}(\mathsf{x}i \,,\, \mathsf{y}j) \, \log_2 \mathsf{P}(\mathsf{y}j/\mathsf{x}i) \\ &= -\left[\left\{ \frac{1-\mathsf{Pe}}{2} \, \log 2 \, (1-\mathsf{Pe}) \right\} \times 2 + \left\{ \frac{\mathsf{Pe}}{2} \, \log 2 \, (\mathsf{Pe}) \right\} \times 2 \right] \\ &= -\left[(1-\mathsf{Pe}) \, \log 2 \, (1-\mathsf{Pe}) + \mathsf{Pe} \, \log 2 (\mathsf{Pe}) \right] \end{aligned}$$ $$I(X,Y)=H(Y)-H(Y/X)=1+[(1-Pe) log2 (1-Pe)+Pe log2 (Pe)]$$ #### **Ternary Symmetric Channel (TSC)** This has the transitional prob: $$p(Y/X) = \begin{vmatrix} x1 \\ 1-2pe \\ x2 \end{vmatrix} \begin{vmatrix} y1 \\ 1-2pe \\ pe \end{vmatrix} pe x3 \begin{vmatrix} pe \\ pe \\ pe \end{vmatrix} 1-2pe \begin{vmatrix} y3 \\ pe \\ 1-2pe \\ pe \end{vmatrix}$$ This TSC is symmetric but not very practical since practically x_1 and x_3 do not affected to much as x_2 . In fact the interference between x_1 and x_3 is much less than the interference between x_1 & x_2 or x_2 & x_3 . Hence, the more practical but nonsymmetric channel has the conditional prob: $$p(Y/X) = \begin{vmatrix} x1 & y1 & y2 & y3 \\ 1-pe & pe & 0 \\ x2 & pe & 1-2pe & pe \\ x3 & 0 & pe & 1-pe \end{vmatrix}$$ Where x_1 interfere with x_2 exactly the same as interference between x_2 and x_3 , but x_2 are not interfered. #### **Other Special Channels** **1-lossless channel:** This has only one nonzero element in each column of the transitional matrix p(Y/X). As an example $$p(Y/X) = \begin{bmatrix} y1 & y2 & y3 & y4 & y5 \\ 3/4 & 1/4 & 0 & 0 & 0 \\ x2 & 0 & 0 & 1/3 & 2/3 & 0 \\ x3 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$ This channel has **H(X/Y)=0** and **I(X,Y)=H(X)** with zero losses entropy. (draw the channel model of this channel) **2-Determinstic channel:** This has only one nonzero element in each row of the transitional matrix p(Y/X). As an example: c channel: This has only one nonzero element in each row of the transitional matrix p(Y/X). As an example: $$p(Y/X) = \begin{bmatrix} x_1 & y_2 & y_3 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ This has $H(Y/X)=0$ and $I(X,Y)=H(Y)$ with zero noise entropy. (draw the channel model of this channel). **3-Noiseless channel:** This has only one nonzero element in each row and column of the transitional matrix p(Y/X), i.e. it is an identity matrix. As an example: This has H(X/Y)=H(Y/X)=0, and I(X,Y)=H(X)=H(Y). (draw the channel model of this channel). $$p(Y/X) = \begin{bmatrix} x1 & y1 & y2 & y3 \\ 1 & 0 & 0 \\ x2 & 0 & 1 & 0 \\ x3 & 0 & 0 & 1 \end{bmatrix}$$ Note that noiseless channel is a losses and deterministic channel