
Chapter 2

(© Vasiliy Koval/Fotolia)

This electric transmission tower is stabilized by cables that exert forces on the tower at their points of connection. In this chapter we will show how to express these forces as Cartesian vectors, and then determine their resultant.

Force Vectors

CHAPTER OBJECTIVES

- To show how to add forces and resolve them into components using the Parallelogram Law.
- To express force and position in Cartesian vector form and explain how to determine the vector's magnitude and direction.
- To introduce the dot product in order to use it to find the angle between two vectors or the projection of one vector onto another.

2.1 Scalars and Vectors

Many physical quantities in engineering mechanics are measured using either scalars or vectors.

Scalar. A *scalar* is any positive or negative physical quantity that can be completely specified by its *magnitude*. Examples of scalar quantities include length, mass, and time.

Vector. A **vector** is any physical quantity that requires both a **magnitude** and a **direction** for its complete description. Examples of vectors encountered in statics are force, position, and moment. A vector is shown graphically by an arrow. The length of the arrow represents the **magnitude** of the vector, and the angle θ between the vector and a fixed axis defines the **direction of its line of action**. The head or tip of the arrow indicates the **sense of direction** of the vector, Fig. 2–1.

In print, vector quantities are represented by boldface letters such as \mathbf{A} , and the magnitude of a vector is italicized, A. For handwritten work, it is often convenient to denote a vector quantity by simply drawing an arrow above it, \overrightarrow{A} .

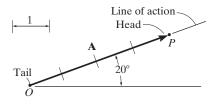
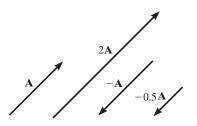



Fig. 2-1

2.2 Vector Operations

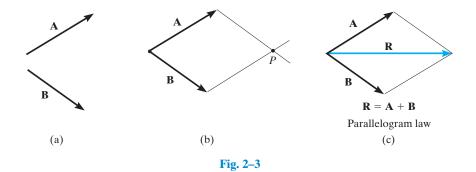
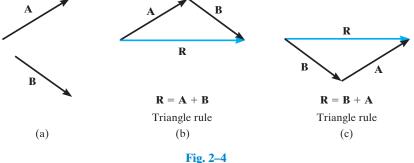
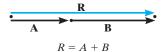

Scalar multiplication and division

Fig. 2-2

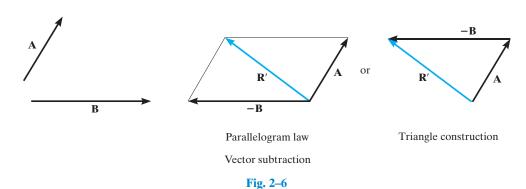

Multiplication and Division of a Vector by a Scalar. If a vector is multiplied by a positive scalar, its magnitude is increased by that amount. Multiplying by a negative scalar will also change the directional sense of the vector. Graphic examples of these operations are shown in Fig. 2–2.

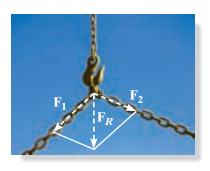
Vector Addition. When adding two vectors together it is important to account for both their magnitudes and their directions. To do this we must use the *parallelogram law of addition*. To illustrate, the two *component vectors* \mathbf{A} and \mathbf{B} in Fig. 2–3a are added to form a *resultant vector* $\mathbf{R} = \mathbf{A} + \mathbf{B}$ using the following procedure:


- First join the tails of the components at a point to make them concurrent, Fig. 2–3b.
- From the head of **B**, draw a line parallel to **A**. Draw another line from the head of **A** that is parallel to **B**. These two lines intersect at point *P* to form the adjacent sides of a parallelogram.
- The diagonal of this parallelogram that extends to P forms \mathbf{R} , which then represents the resultant vector $\mathbf{R} = \mathbf{A} + \mathbf{B}$, Fig. 2–3c.

We can also add **B** to **A**, Fig. 2–4a, using the *triangle rule*, which is a special case of the parallelogram law, whereby vector **B** is added to vector **A** in a "head-to-tail" fashion, i.e., by connecting the head of **A** to the tail of **B**, Fig. 2–4b. The resultant **R** extends from the tail of **A** to the head of **B**. In a similar manner, **R** can also be obtained by adding **A** to **B**, Fig. 2–4c. By comparison, it is seen that vector addition is commutative; in other words, the vectors can be added in either order, i.e., $\mathbf{R} = \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.

As a special case, if the two vectors **A** and **B** are *collinear*, i.e., both have the same line of action, the parallelogram law reduces to an algebraic or scalar addition R = A + B, as shown in Fig. 2–5.

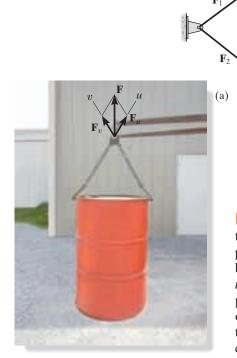

Addition of collinear vectors


Fig. 2-5

Vector Subtraction. The resultant of the *difference* between two vectors **A** and **B** of the same type may be expressed as

$$\mathbf{R}' = \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$$

This vector sum is shown graphically in Fig. 2-6. Subtraction is therefore defined as a special case of addition, so the rules of vector addition also apply to vector subtraction.



The parallelogram law must be used to determine the resultant of the two forces acting on the hook. (© Russell C. Hibbeler)

2.3 Vector Addition of Forces

Experimental evidence has shown that a force is a vector quantity since it has a specified magnitude, direction, and sense and it adds according to the parallelogram law. Two common problems in statics involve either finding the resultant force, knowing its components, or resolving a known force into two components. We will now describe how each of these problems is solved using the parallelogram law.

Finding a Resultant Force. The two component forces \mathbf{F}_1 and \mathbf{F}_2 acting on the pin in Fig. 2–7*a* can be added together to form the resultant force $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$, as shown in Fig. 2–7*b*. From this construction, or using the triangle rule, Fig. 2–7*c*, we can apply the law of cosines or the law of sines to the triangle in order to obtain the magnitude of the resultant force and its direction.

Using the parallelogram law the supporting force \mathbf{F} can be resolved into components acting along the u and v axes. (© Russell C. Hibbeler)

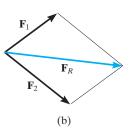
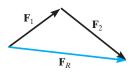



Fig. 2-7

 $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$ (c)

Finding the Components of a Force. Sometimes it is necessary to resolve a force into two *components* in order to study its pulling or pushing effect in two specific directions. For example, in Fig. 2–8a, **F** is to be resolved into two components along the two members, defined by the u and v axes. In order to determine the magnitude of each component, a parallelogram is constructed first, by drawing lines starting from the tip of **F**, one line parallel to u, and the other line parallel to v. These lines then intersect with the v and u axes, forming a parallelogram. The force components \mathbf{F}_u and \mathbf{F}_v are then established by simply joining the tail of \mathbf{F} to the intersection points on the u and v axes, Fig. 2–8b. This parallelogram can then be reduced to a triangle, which represents the triangle rule, Fig. 2–8c. From this, the law of sines can then be applied to determine the unknown magnitudes of the components.

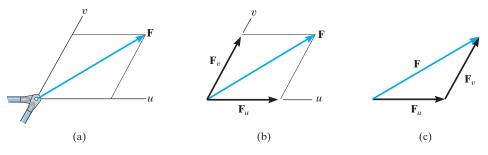
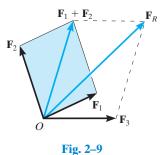
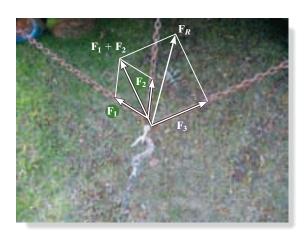
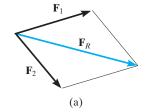
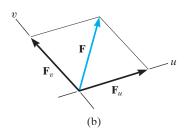
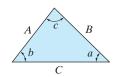




Fig. 2-8

Addition of Several Forces. If more than two forces are to be added, successive applications of the parallelogram law can be carried out in order to obtain the resultant force. For example, if three forces \mathbf{F}_1 , \mathbf{F}_2 , \mathbf{F}_3 act at a point O, Fig. 2–9, the resultant of any two of the forces is found, say, $\mathbf{F}_1 + \mathbf{F}_2$ —and then this resultant is added to the third force, yielding the resultant of all three forces; i.e., $\mathbf{F}_R = (\mathbf{F}_1 + \mathbf{F}_2) + \mathbf{F}_3$. Using the parallelogram law to add more than two forces, as shown here, often requires extensive geometric and trigonometric calculation to determine the numerical values for the magnitude and direction of the resultant. Instead, problems of this type are easily solved by using the "rectangular-component method," which is explained in Sec. 2.4.






The resultant force \mathbf{F}_R on the hook requires the addition of $\mathbf{F}_1 + \mathbf{F}_2$, then this resultant is added to \mathbf{F}_3 . (© Russell C. Hibbeler)

Important Points

- A scalar is a positive or negative number.
- A vector is a quantity that has a magnitude, direction, and sense.
- Multiplication or division of a vector by a scalar will change the magnitude of the vector. The sense of the vector will change if the scalar is negative.
- As a special case, if the vectors are collinear, the resultant is formed by an algebraic or scalar addition.

Cosine law:

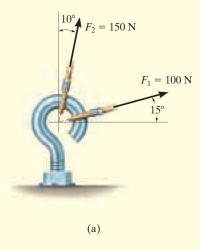
$$C = \sqrt{A^2 + B^2 - 2AB \cos c}$$
Sine law:

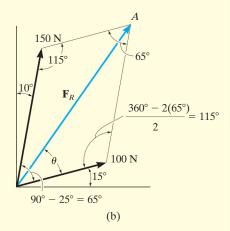
$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$
(c)

Fig. 2-10

Procedure for Analysis

Problems that involve the addition of two forces can be solved as follows:


Parallelogram Law.


- Two "component" forces \mathbf{F}_1 and \mathbf{F}_2 in Fig. 2–10*a* add according to the parallelogram law, yielding a *resultant* force \mathbf{F}_R that forms the diagonal of the parallelogram.
- If a force \mathbf{F} is to be resolved into *components* along two axes u and v, Fig. 2–10b, then start at the head of force \mathbf{F} and construct lines parallel to the axes, thereby forming the parallelogram. The sides of the parallelogram represent the components, \mathbf{F}_u and \mathbf{F}_v .
- Label all the known and unknown force magnitudes and the angles on the sketch and identify the two unknowns as the magnitude and direction of \mathbf{F}_R , or the magnitudes of its components.

Trigonometry.

- Redraw a half portion of the parallelogram to illustrate the triangular head-to-tail addition of the components.
- From this triangle, the magnitude of the resultant force can be determined using the law of cosines, and its direction is determined from the law of sines. The magnitudes of two force components are determined from the law of sines. The formulas are given in Fig. 2–10c.

The screw eye in Fig. 2–11a is subjected to two forces, \mathbf{F}_1 and \mathbf{F}_2 . Determine the magnitude and direction of the resultant force.

SOLUTION

Parallelogram Law. The parallelogram is formed by drawing a line from the head of \mathbf{F}_1 that is parallel to \mathbf{F}_2 , and another line from the head of \mathbf{F}_2 that is parallel to \mathbf{F}_1 . The resultant force \mathbf{F}_R extends to where these lines intersect at point A, Fig. 2–11b. The two unknowns are the magnitude of \mathbf{F}_R and the angle θ (theta).

Trigonometry. From the parallelogram, the vector triangle is constructed, Fig. 2–11*c*. Using the law of cosines

$$F_R = \sqrt{(100 \text{ N})^2 + (150 \text{ N})^2 - 2(100 \text{ N})(150 \text{ N}) \cos 115^\circ}$$

$$= \sqrt{10000 + 22500 - 30000(-0.4226)} = 212.6 \text{ N}$$

$$= 213 \text{ N}$$
Ans.

Applying the law of sines to determine θ ,

$$\frac{150 \text{ N}}{\sin \theta} = \frac{212.6 \text{ N}}{\sin 115^{\circ}} \qquad \sin \theta = \frac{150 \text{ N}}{212.6 \text{ N}} (\sin 115^{\circ})$$
$$\theta = 39.8^{\circ}$$

Thus, the direction ϕ (phi) of \mathbf{F}_R , measured from the horizontal, is

$$\phi = 39.8^{\circ} + 15.0^{\circ} = 54.8^{\circ}$$
 Ans.

NOTE: The results seem reasonable, since Fig. 2–11b shows \mathbf{F}_R to have a magnitude larger than its components and a direction that is between them.

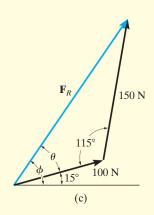


Fig. 2-11

Resolve the horizontal 600-lb force in Fig. 2–12a into components acting along the u and v axes and determine the magnitudes of these components.

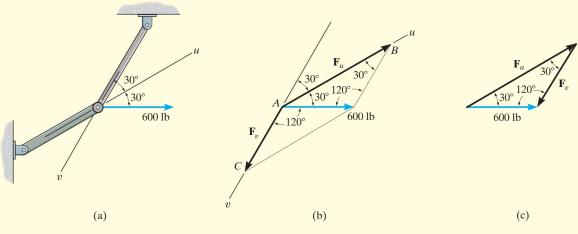


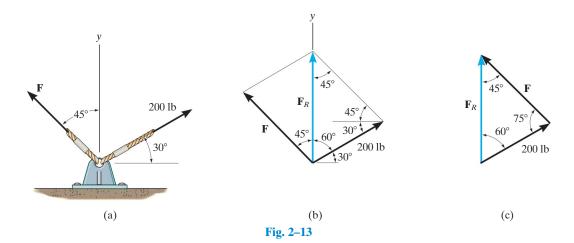
Fig. 2-12

SOLUTION

The parallelogram is constructed by extending a line from the *head* of the 600-lb force parallel to the v axis until it intersects the u axis at point B, Fig. 2–12b. The arrow from A to B represents \mathbf{F}_u . Similarly, the line extended from the head of the 600-lb force drawn parallel to the u axis intersects the v axis at point C, which gives \mathbf{F}_v .

The vector addition using the triangle rule is shown in Fig. 2–12c. The two unknowns are the magnitudes of \mathbf{F}_u and \mathbf{F}_v . Applying the law of sines,

$$\frac{F_u}{\sin 120^\circ} = \frac{600 \text{ lb}}{\sin 30^\circ}$$


$$F_u = 1039 \text{ lb}$$

$$\frac{F_v}{\sin 30^\circ} = \frac{600 \text{ lb}}{\sin 30^\circ}$$

$$F_v = 600 \text{ lb}$$
Ans.

NOTE: The result for F_u shows that sometimes a component can have a greater magnitude than the resultant.

Determine the magnitude of the component force \mathbf{F} in Fig. 2–13a and the magnitude of the resultant force \mathbf{F}_R if \mathbf{F}_R is directed along the positive y axis.

SOLUTION

The parallelogram law of addition is shown in Fig. 2–13b, and the triangle rule is shown in Fig. 2–13c. The magnitudes of \mathbf{F}_R and \mathbf{F} are the two unknowns. They can be determined by applying the law of sines.

$$\frac{F}{\sin 60^{\circ}} = \frac{200 \text{ lb}}{\sin 45^{\circ}}$$

$$F = 245 \text{ lb}$$

$$\frac{F_R}{\sin 75^{\circ}} = \frac{200 \text{ lb}}{\sin 45^{\circ}}$$

$$F_R = 273 \text{ lb}$$
Ans.

It is required that the resultant force acting on the eyebolt in Fig. 2–14a be directed along the positive x axis and that \mathbf{F}_2 have a *minimum* magnitude. Determine this magnitude, the angle θ , and the corresponding resultant force.

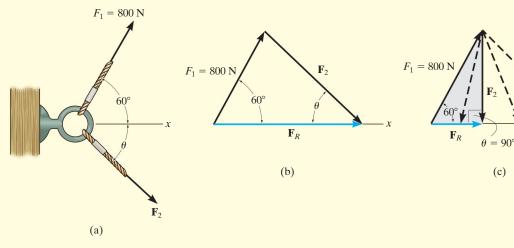


Fig. 2-14

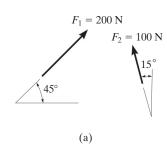
SOLUTION

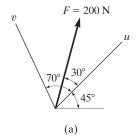
The triangle rule for $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$ is shown in Fig. 2–14b. Since the magnitudes (lengths) of \mathbf{F}_R and \mathbf{F}_2 are not specified, then \mathbf{F}_2 can actually be any vector that has its head touching the line of action of \mathbf{F}_R , Fig. 2–14c. However, as shown, the magnitude of \mathbf{F}_2 is a *minimum* or the shortest length when its line of action is *perpendicular* to the line of action of \mathbf{F}_R , that is, when

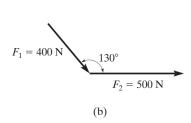
$$\theta = 90^{\circ}$$
 Ans.

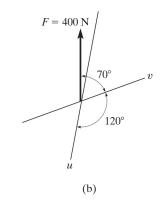
Since the vector addition now forms the shaded right triangle, the two unknown magnitudes can be obtained by trigonometry.

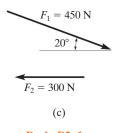
$$F_R = (800 \text{ N})\cos 60^\circ = 400 \text{ N}$$
 Ans.
 $F_2 = (800 \text{ N})\sin 60^\circ = 693 \text{ N}$ Ans.

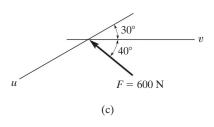

It is strongly suggested that you test yourself on the solutions to these examples, by covering them over and then trying to draw the parallelogram law, and thinking about how the sine and cosine laws are used to determine the unknowns. Then before solving any of the problems, try to solve the Preliminary Problems and some of the Fundamental Problems given on the next pages. The solutions and answers to these are given in the back of the book. Doing this throughout the book will help immensely in developing your problem-solving skills.

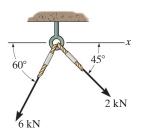

PRELIMINARY PROBLEMS


Partial solutions and answers to all Preliminary Problems are given in the back of the book.


P2–1. In each case, construct the parallelogram law to show $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$. Then establish the triangle rule, where $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$. Label all known and unknown sides and internal angles.

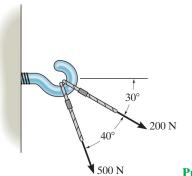

P2–2. In each case, show how to resolve the force \mathbf{F} into components acting along the u and v axes using the parallelogram law. Then establish the triangle rule to show $\mathbf{F}_R = \mathbf{F}_u + \mathbf{F}_v$. Label all known and unknown sides and interior angles.



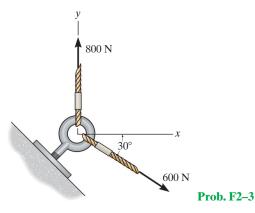

Prob. P2-1

Prob. P2-2

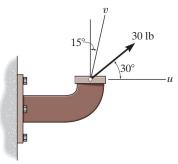
FUNDAMENTAL PROBLEMS


Partial solutions and answers to all Fundamental Problems are given in the back of the book.

F2–1. Determine the magnitude of the resultant force acting on the screw eye and its direction measured clockwise from the *x* axis.

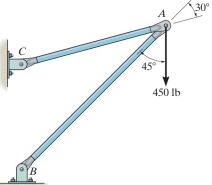

Prob. F2-1

F2–2. Two forces act on the hook. Determine the magnitude of the resultant force.

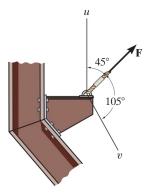


Prob. F2-2

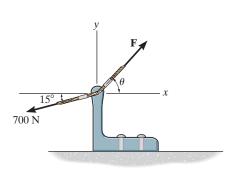
F2–3. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive *x* axis.



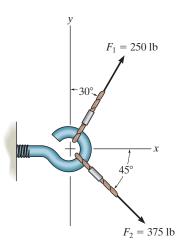
F2–4. Resolve the 30-lb force into components along the u and v axes, and determine the magnitude of each of these components.


Prob. F2-4

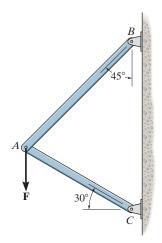
F2–5. The force F = 450 lb acts on the frame. Resolve this force into components acting along members AB and AC, and determine the magnitude of each component.


Prob. F2-5

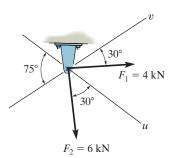
F2–6. If force **F** is to have a component along the u axis of $F_u = 6$ kN, determine the magnitude of **F** and the magnitude of its component \mathbf{F}_v along the v axis.


Prob. F2-6

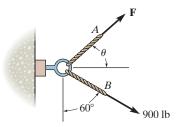
- **2–1.** If $\theta = 60^{\circ}$ and F = 450 N, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.
- **2–2.** If the magnitude of the resultant force is to be 500 N, directed along the positive y axis, determine the magnitude of force \mathbf{F} and its direction θ .


Probs. 2-1/2

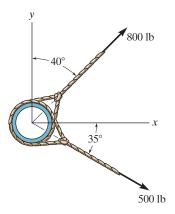
2–3. Determine the magnitude of the resultant force $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$ and its direction, measured counterclockwise from the positive x axis.


Prob. 2-3

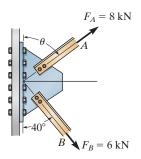
- *2–4. The vertical force \mathbf{F} acts downward at A on the two-membered frame. Determine the magnitudes of the two components of \mathbf{F} directed along the axes of AB and AC. Set F = 500 N.
- **2–5.** Solve Prob. 2–4 with F = 350 lb.


Probs. 2-4/5

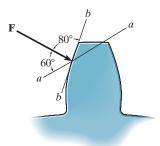
- **2–6.** Determine the magnitude of the resultant force $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$ and its direction, measured clockwise from the positive u axis.
- **2–7.** Resolve the force \mathbf{F}_1 into components acting along the u and v axes and determine the magnitudes of the components.
- *2-8. Resolve the force \mathbf{F}_2 into components acting along the u and v axes and determine the magnitudes of the components.


Probs. 2-6/7/8

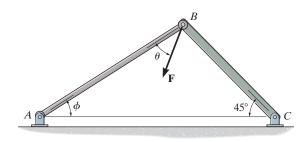
2–9. If the resultant force acting on the support is to be 1200 lb, directed horizontally to the right, determine the force \mathbf{F} in rope A and the corresponding angle θ .


Prob. 2-9

2–10. Determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive *x* axis.

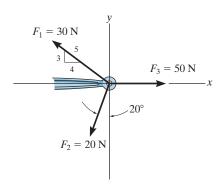

Prob. 2-10

- **2–11.** The plate is subjected to the two forces at A and B as shown. If $\theta = 60^{\circ}$, determine the magnitude of the resultant of these two forces and its direction measured clockwise from the horizontal.
- *2–12. Determine the angle θ for connecting member A to the plate so that the resultant force of \mathbf{F}_A and \mathbf{F}_B is directed horizontally to the right. Also, what is the magnitude of the resultant force?

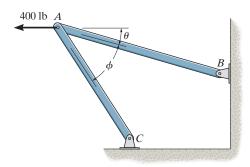

Probs. 2-11/12

- **2–13.** The force acting on the gear tooth is F = 20 lb. Resolve this force into two components acting along the lines aa and bb.
- **2–14.** The component of force \mathbf{F} acting along line aa is required to be 30 lb. Determine the magnitude of \mathbf{F} and its component along line bb.

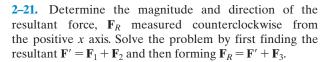
Probs. 2-13/14


- **2–15.** Force **F** acts on the frame such that its component acting along member AB is 650 lb, directed from B towards A, and the component acting along member BC is 500 lb, directed from B towards C. Determine the magnitude of **F** and its direction θ . Set $\phi = 60^{\circ}$.
- *2-16. Force **F** acts on the frame such that its component acting along member AB is 650 lb, directed from B towards A. Determine the required angle ϕ (0° $\leq \phi \leq$ 45°) and the component acting along member BC. Set F=850 lb and $\theta=30^\circ$.

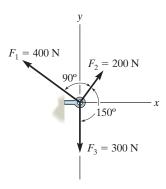
Probs. 2-15/16


2–17. Determine the magnitude and direction of the resultant $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ of the three forces by first finding the resultant $\mathbf{F}' = \mathbf{F}_1 + \mathbf{F}_2$ and then forming $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_3$.

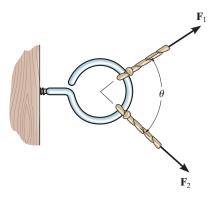
2–18. Determine the magnitude and direction of the resultant $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ of the three forces by first finding the resultant $\mathbf{F}' = \mathbf{F}_2 + \mathbf{F}_3$ and then forming $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_1$.



Probs. 2-17/18

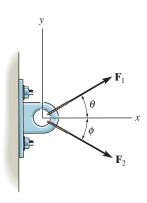

- **2–19.** Determine the design angle θ (0° $\leq \theta \leq 90$ °) for strut AB so that the 400-lb horizontal force has a component of 500 lb directed from A towards C. What is the component of force acting along member AB? Take $\phi = 40$ °.
- *2–20. Determine the design angle ϕ (0° $\leq \phi \leq$ 90°) between struts AB and AC so that the 400-lb horizontal force has a component of 600 lb which acts up to the left, in the same direction as from B towards A. Take $\theta = 30^\circ$.

Probs. 2-19/20

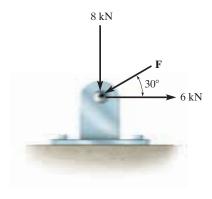


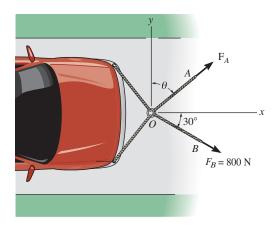
2–22. Determine the magnitude and direction of the resultant force, measured counterclockwise from the positive x axis. Solve l by first finding the resultant $\mathbf{F}' = \mathbf{F}_2 + \mathbf{F}_3$ and then forming $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_1$.

Probs. 2-21/22

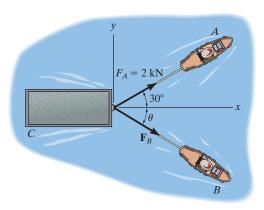

- **2–23.** Two forces act on the screw eye. If $F_1 = 400 \text{ N}$ and $F_2 = 600 \text{ N}$, determine the angle θ (0° $\leq \theta \leq 180$ °) between them, so that the resultant force has a magnitude of $F_R = 800 \text{ N}$.
- *2–24. Two forces \mathbf{F}_1 and \mathbf{F}_2 act on the screw eye. If their lines of action are at an angle θ apart and the magnitude of each force is $F_1 = F_2 = F$, determine the magnitude of the resultant force \mathbf{F}_R and the angle between \mathbf{F}_R and \mathbf{F}_1 .

Probs. 2-23/24


2–25. If $F_1 = 30$ lb and $F_2 = 40$ lb, determine the angles θ and ϕ so that the resultant force is directed along the positive x axis and has a magnitude of $F_R = 60$ lb.


Prob. 2-25

- **2–26.** Determine the magnitude and direction θ of \mathbf{F}_A so that the resultant force is directed along the positive x axis and has a magnitude of 1250 N.
- **2–27.** Determine the magnitude and direction, measured counterclockwise from the positive x axis, of the resultant force acting on the ring at O, if $F_A = 750$ N and $\theta = 45^\circ$.



Prob. 2-28

- **2–29.** If the resultant force of the two tugboats is 3 kN, directed along the positive x axis, determine the required magnitude of force \mathbf{F}_B and its direction θ .
- **2–30.** If $\mathbf{F}_B = 3$ kN and $\theta = 45^\circ$, determine the magnitude of the resultant force of the two tugboats and its direction measured clockwise form the positive x axis.
- **2–31.** If the resultant force of the two tugboats is required to be directed towards the positive x axis, and \mathbf{F}_B is to be a minimum, determine the magnitude of \mathbf{F}_R and \mathbf{F}_B and the angle θ .

Probs. 2-26/27

Probs. 2-29/30/31