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of an inward normal to the surface of the page. If the velocity of water does not change

as we go up- or downstream and also shows no variation as we go across the river

(or even if it decreases in the same fashion toward either bank), then this component

is the only component present at the center of the stream, and the curl of the water

velocity has a direction into the page.

In Figure 7.14b, the streamlines of the magnetic field intensity about an infinitely

long filamentary conductor are shown. The curl meter placed in this field of curved

lines shows that a larger number of blades have a clockwise force exerted on them

but that this force is in general smaller than the counterclockwise force exerted on

the smaller number of blades closer to the wire. It seems possible that if the curvature

of the streamlines is correct and also if the variation of the field strength is just right,

the net torque on the paddle wheel may be zero. Actually, the paddle wheel does not

rotate in this case, for since H = (I/2πρ)aφ, we may substitute into (25) obtaining

curl H = −
∂Hφ

∂z
aρ +

1

ρ

∂(ρHφ)

∂ρ
az = 0

EXAMPLE 7.2

As an example of the evaluation of curl H from the definition and of the evaluation of

another line integral, suppose that H = 0.2z2ax for z > 0, and H = 0 elsewhere, as

shown in Figure 7.15. Calculate
∮

H · dL about a square path with side d, centered

at (0, 0, z1) in the y = 0 plane where z1 > d/2.

Figure 7.15 A square path of side d with its center on the

z axis at z = z1 is used to evaluate
∮

H · dL and find curl H.
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Solution. We evaluate the line integral of H along the four segments, beginning at

the top:

∮

H · dL = 0.2
(

z1 + 1
2
d
)2

d + 0 − 0.2
(

z1 − 1
2
d
)2

d + 0

= 0.4z1d2

In the limit as the area approaches zero, we find

(∇ × H)y = lim
d→0

∮

H · dL

d2
= lim

d→0

0.4z1d2

d2
= 0.4z1

The other components are zero, so ∇ × H = 0.4z1ay .

To evaluate the curl without trying to illustrate the definition or the evaluation of

a line integral, we simply take the partial derivative indicated by (23):

∇ × H =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az

∂

∂x

∂

∂y

∂

∂z

0.2z2 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂

∂z
(0.2z2)ay = 0.4zay

which checks with the preceding result when z = z1.

Returning now to complete our original examination of the application of

Ampère’s circuital law to a differential-sized path, we may combine (18)–(20), (22),

and (24),

curl H = ∇ × H =
(

∂Hz

∂y
−

∂Hy

∂z

)

ax +
(

∂Hx

∂z
−

∂Hz

∂x

)

ay

+
(

∂Hy

∂x
−

∂Hx

∂y

)

az = J (27)

and write the point form of Ampère’s circuital law,

∇ × H = J (28)

This is the second of Maxwell’s four equations as they apply to non-time-varying

conditions. We may also write the third of these equations at this time; it is the point

form of
∮

E · dL = 0, or

∇ × E = 0 (29)

The fourth equation appears in Section 7.5.
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D7.4. (a) Evaluate the closed line integral of H about the rectangular path

P1(2, 3, 4) to P2(4, 3, 4) to P3(4, 3, 1) to P4(2, 3, 1) to P1, given H = 3zax −
2x3az A/m. (b) Determine the quotient of the closed line integral and the area

enclosed by the path as an approximation to (∇ × H)y . (c) Determine (∇ × H)y

at the center of the area.

Ans. 354 A; 59 A/m2; 57 A/m2

D7.5. Calculate the value of the vector current density: (a) in rectangular

coordinates at PA(2, 3, 4) if H = x2zay − y2xaz ; (b) in cylindrical coordi-

nates at PB(1.5, 90◦, 0.5) if H =
2

ρ
(cos 0.2φ)aρ ; (c) in spherical coordinates at

PC (2, 30◦, 20◦) if H =
1

sin θ
aθ .

Ans. −16ax + 9ay + 16az A/m2; 0.055az A/m2; aφ A/m2

7.4 STOKES’ THEOREM

Although Section 7.3 was devoted primarily to a discussion of the curl operation,

the contribution to the subject of magnetic fields should not be overlooked. From

Ampère’s circuital law we derived one of Maxwell’s equations, ∇ × H = J. This

latter equation should be considered the point form of Ampère’s circuital law and

applies on a “per-unit-area” basis. In this section we shall again devote a major share

of the material to the mathematical theorem known as Stokes’ theorem, but in the

process we will show that we may obtain Ampère’s circuital law from ∇ × H = J.

In other words, we are then prepared to obtain the integral form from the point form

or to obtain the point form from the integral form.

Consider the surface S of Figure 7.16, which is broken up into incremental

surfaces of area �S. If we apply the definition of the curl to one of these incremental

surfaces, then
∮

H · dL�S

�S

.= (∇ × H)N

where the N subscript again indicates the right-hand normal to the surface. The

subscript on dL�S indicates that the closed path is the perimeter of an incremental

area �S. This result may also be written
∮

H · dL�S

�S

.= (∇ × H) · aN

or
∮

H · dL�S
.= (∇ × H) · aN �S = (∇ × H) · �S

where aN is a unit vector in the direction of the right-hand normal to �S.

Now let us determine this circulation for every �S comprising S and sum the re-

sults. As we evaluate the closed line integral for each �S, some cancellation will occur
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Figure 7.16 The sum of the closed line integrals

about the perimeter of every �S is the same as the

closed line integral about the perimeter of S because

of cancellation on every interior path.

because every interior wall is covered once in each direction. The only boundaries

on which cancellation cannot occur form the outside boundary, the path enclosing S.

Therefore we have

∮

H · dL ≡
∫

S

(∇ × H) · dS (30)

where dL is taken only on the perimeter of S.

Equation (30) is an identity, holding for any vector field, and is known as Stokes’

theorem.

EXAMPLE 7.3

A numerical example may help to illustrate the geometry involved in Stokes’ theorem.

Consider the portion of a sphere shown in Figure 7.17. The surface is specified by r =
4, 0 ≤ θ ≤ 0.1π , 0 ≤ φ ≤ 0.3π , and the closed path forming its perimeter is com-

posed of three circular arcs. We are given the field H = 6r sin φar +18r sin θ cos φaφ

and are asked to evaluate each side of Stokes’ theorem.

Solution. The first path segment is described in spherical coordinates by r = 4, 0 ≤
θ ≤ 0.1π, φ = 0; the second one by r = 4, θ = 0.1π, 0 ≤ φ ≤ 0.3π ; and the third

by r = 4, 0 ≤ θ ≤ 0.1π, φ = 0.3π . The differential path element dL is the vector

sum of the three differential lengths of the spherical coordinate system first discussed

in Section 1.9,

dL = dr ar + r dθ aθ + r sin θ dφ aφ
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Figure 7.17 A portion of a spherical cap is

used as a surface and a closed path to illustrate

Stokes’ theorem.

The first term is zero on all three segments of the path since r = 4 and dr = 0,

the second is zero on segment 2 as θ is constant, and the third term is zero on both

segments 1 and 3. Thus,
∮

H · dL =
∫

1

Hθr dθ +
∫

2

Hφr sin θ dφ +
∫

3

Hθr dθ

Because Hθ = 0, we have only the second integral to evaluate,
∮

H · dL =
∫ 0.3π

0

[18(4) sin 0.1π cos φ]4 sin 0.1πdφ

= 288 sin2 0.1π sin 0.3π = 22.2 A

We next attack the surface integral. First, we use (26) to find

∇ × H =
1

r sin θ
(36r sin θ cos θ cos φ)ar +

1

r

(

1

sin θ
6r cos φ − 36r sin θ cos φ

)

aθ

Because dS = r2 sin θ dθ dφ ar , the integral is
∫

S

(∇ × H) · dS =
∫ 0.3π

0

∫ 0.1π

0

(36 cos θ cos φ)16 sin θ dθ dφ

=
∫ 0.3π

0

576
(

1
2

sin2 θ
)

∣

∣

∣

0.1π

0
cos φ dφ

= 288 sin2 0.1π sin 0.3π = 22.2 A
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Thus, the results check Stokes’ theorem, and we note in passing that a current of

22.2 A is flowing upward through this section of a spherical cap.

Next, let us see how easy it is to obtain Ampère’s circuital law from ∇ × H = J.

We merely have to dot each side by dS, integrate each side over the same (open)

surface S, and apply Stokes’ theorem:

∫

S

(∇ × H) · dS =
∫

S

J · dS =
∮

H · dL

The integral of the current density over the surface S is the total current I passing

through the surface, and therefore

∮

H · dL = I

This short derivation shows clearly that the current I , described as being “en-

closed by the closed path,” is also the current passing through any of the infinite

number of surfaces that have the closed path as a perimeter.

Stokes’ theorem relates a surface integral to a closed line integral. It should

be recalled that the divergence theorem relates a volume integral to a closed surface

integral. Both theorems find their greatest use in general vector proofs. As an example,

let us find another expression for ∇ · ∇ × A, where A represents any vector field. The

result must be a scalar (why?), and we may let this scalar be T , or

∇ · ∇ × A = T

Multiplying by dν and integrating throughout any volume ν,

∫

vol

(∇ · ∇ × A) dν =
∫

vol

T dν

we first apply the divergence theorem to the left side, obtaining

∮

S

(∇ × A) · dS =
∫

vol

T dν

The left side is the surface integral of the curl of A over the closed surface

surrounding the volume ν. Stokes’ theorem relates the surface integral of the curl of

A over the open surface enclosed by a given closed path. If we think of the path as

the opening of a laundry bag and the open surface as the surface of the bag itself, we

see that as we gradually approach a closed surface by pulling on the drawstrings, the

closed path becomes smaller and smaller and finally disappears as the surface becomes

closed. Hence, the application of Stokes’ theorem to a closed surface produces a zero

result, and we have
∫

vol

T dν = 0
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Because this is true for any volume, it is true for the differential volume dν,

T dν = 0

and therefore

T = 0

or

∇ · ∇ × A ≡ 0 (31)

Equation (31) is a useful identity of vector calculus.6 Of course, it may also be

proven easily by direct expansion in rectangular coordinates.

Let us apply the identity to the non-time-varying magnetic field for which

∇ × H = J

This shows quickly that

∇ · J = 0

which is the same result we obtained earlier in the chapter by using the continuity

equation.

Before introducing several new magnetic field quantities in the following section,

we may review our accomplishments at this point. We initially accepted the Biot-

Savart law as an experimental result,

H =
∮

I dL × aR

4πR2

and tentatively accepted Ampère’s circuital law, subject to later proof,
∮

H · dL = I

From Ampère’s circuital law the definition of curl led to the point form of this same

law,

∇ × H = J

We now see that Stokes’ theorem enables us to obtain the integral form of Ampère’s

circuital law from the point form.

D7.6. Evaluate both sides of Stokes’ theorem for the field H = 6xyax −
3y2ay A/m and the rectangular path around the region, 2 ≤ x ≤ 5, −1 ≤ y ≤
1, z = 0. Let the positive direction of dS be az .

Ans. −126 A; −126 A

6 This and other vector identities are tabulated in Appendix A.3.
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7.5 MAGNETIC FLUX AND MAGNETIC
FLUX DENSITY

In free space, let us define the magnetic flux density B as

B = µ0H (free space only) (32)

where B is measured in webers per square meter (Wb/m2) or in a newer unit adopted

in the International System of Units, tesla (T). An older unit that is often used for

magnetic flux density is the gauss (G), where 1 T or 1Wb/m2 is the same as 10, 000 G.

The constant µ0 is not dimensionless and has the defined value for free space, in henrys

per meter (H/m), of

µ0 = 4π × 10−7 H/m (33)

The name given to µ0 is the permeability of free space.

We should note that since H is measured in amperes per meter, the weber is

dimensionally equal to the product of henrys and amperes. Considering the henry as

a new unit, the weber is merely a convenient abbreviation for the product of henrys

and amperes. When time-varying fields are introduced, it will be shown that a weber

is also equivalent to the product of volts and seconds.

The magnetic-flux-density vector B, as the name weber per square meter im-

plies, is a member of the flux-density family of vector fields. One of the possible

analogies between electric and magnetic fields7 compares the laws of Biot-Savart and

Coulomb, thus establishing an analogy between H and E. The relations B = µ0H

and D = ε0E then lead to an analogy between B and D. If B is measured in teslas or

webers per square meter, then magnetic flux should be measured in webers. Let us

represent magnetic flux by 
 and define 
 as the flux passing through any designated

area,


 =
∫

S

B · dS Wb (34)

Our analogy should now remind us of the electric flux �, measured in coulombs,

and of Gauss’s law, which states that the total flux passing through any closed surface

is equal to the charge enclosed,

� =
∮

S

D · dS = Q

The charge Q is the source of the lines of electric flux and these lines begin and

terminate on positive and negative charges, respectively.

7 An alternate analogy is presented in Section 9.2.
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No such source has ever been discovered for the lines of magnetic flux. In the

example of the infinitely long straight filament carrying a direct current I , the H field

formed concentric circles about the filament. Because B = µ0H, the B field is of the

same form. The magnetic flux lines are closed and do not terminate on a “magnetic

charge.” For this reason Gauss’s law for the magnetic field is

∮

S

B · dS = 0 (35)

and application of the divergence theorem shows us that

∇ · B = 0 (36)

Equation (36) is the last of Maxwell’s four equations as they apply to static

electric fields and steady magnetic fields. Collecting these equations, we then have

for static electric fields and steady magnetic fields

∇ · D = ρν

∇ × E = 0

∇ × H = J

∇ · B = 0

(37)

To these equations we may add the two expressions relating D to E and B to H

in free space,

D = ε0E (38)

B = µ0H (39)

We have also found it helpful to define an electrostatic potential,

E = −∇V (40)

and we will discuss a potential for the steady magnetic field in the following section. In

addition, we extended our coverage of electric fields to include conducting materials

and dielectrics, and we introduced the polarization P. A similar treatment will be

applied to magnetic fields in the next chapter.

Returning to (37), it may be noted that these four equations specify the divergence

and curl of an electric and a magnetic field. The corresponding set of four integral
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equations that apply to static electric fields and steady magnetic fields is

∮

S

D · dS = Q =
∫

vol

ρνdν

∮

E · dL = 0

∮

H · dL = I =
∫

S

J · dS

∮

S

B · dS = 0

(41)

Our study of electric and magnetic fields would have been much simpler if we

could have begun with either set of equations, (37) or (41). With a good knowledge

of vector analysis, such as we should now have, either set may be readily obtained

from the other by applying the divergence theorem or Stokes’ theorem. The various

experimental laws can be obtained easily from these equations.

As an example of the use of flux and flux density in magnetic fields, let us find

the flux between the conductors of the coaxial line of Figure 7.8a. The magnetic field

intensity was found to be

Hφ =
I

2πρ
(a < ρ < b)

and therefore

B = µ0H =
µ0 I

2πρ
aφ

The magnetic flux contained between the conductors in a length d is the flux

crossing any radial plane extending from ρ = a to ρ = b and from, say, z = 0 to

z = d


 =
∫

S

B · dS =
∫ d

0

∫ b

a

µ0 I

2πρ
aφ · dρ dz aφ

or


 =
µ0 Id

2π
ln

b

a
(42)

This expression will be used later to obtain the inductance of the coaxial trans-

mission line.

D7.7. A solid conductor of circular cross section is made of a homogeneous

nonmagnetic material. If the radius a = 1 mm, the conductor axis lies on the

z axis, and the total current in the az direction is 20 A, find: (a) Hφ atρ = 0.5 mm;

(b) Bφ at ρ = 0.8 mm; (c) the total magnetic flux per unit length inside the

conductor; (d) the total flux for ρ < 0.5 mm; (e) the total magnetic flux outside

the conductor.

Ans. 1592 A/m; 3.2 mT; 2 µWb/m; 0.5 µWb; ∞
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7.6 THE SCALAR AND VECTOR
MAGNETIC POTENTIALS

The solution of electrostatic field problems is greatly simplified by the use of the

scalar electrostatic potential V. Although this potential possesses a very real physical

significance for us, it is mathematically no more than a stepping-stone which allows

us to solve a problem by several smaller steps. Given a charge configuration, we may

first find the potential and then from it the electric field intensity.

We should question whether or not such assistance is available in magnetic fields.

Can we define a potential function which may be found from the current distribution

and from which the magnetic fields may be easily determined? Can a scalar magnetic

potential be defined, similar to the scalar electrostatic potential? We will show in

the next few pages that the answer to the first question is yes, but the second must

be answered “sometimes.” Let us attack the second question first by assuming the

existence of a scalar magnetic potential, which we designate Vm , whose negative

gradient gives the magnetic field intensity

H = −∇Vm

The selection of the negative gradient provides a closer analogy to the electric potential

and to problems which we have already solved.

This definition must not conflict with our previous results for the magnetic field,

and therefore

∇ × H = J = ∇ × (−∇Vm)

However, the curl of the gradient of any scalar is identically zero, a vector identity

the proof of which is left for a leisure moment. Therefore, we see that if H is to be

defined as the gradient of a scalar magnetic potential, then current density must be

zero throughout the region in which the scalar magnetic potential is so defined. We

then have

H = −∇Vm (J = 0) (43)

Because many magnetic problems involve geometries in which the current-carrying

conductors occupy a relatively small fraction of the total region of interest, it is evident

that a scalar magnetic potential can be useful. The scalar magnetic potential is also

applicable in the case of permanent magnets. The dimensions of Vm are obviously

amperes.

This scalar potential also satisfies Laplace’s equation. In free space,

∇ · B = µ0∇ · H = 0

and hence

µ0∇ · (−∇Vm) = 0
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or

∇2Vm = 0 (J = 0) (44)

We will see later that Vm continues to satisfy Laplace’s equation in homogeneous

magnetic materials; it is not defined in any region in which current density is present.

Although we shall consider the scalar magnetic potential to a much greater extent

in Chapter 8, when we introduce magnetic materials and discuss the magnetic circuit,

one difference between V and Vm should be pointed out now: Vm is not a single-valued

function of position. The electric potential V is single-valued; once a zero reference is

assigned, there is only one value of V associated with each point in space. Such is not

the case with Vm . Consider the cross section of the coaxial line shown in Figure 7.18.

In the region a < ρ < b, J = 0, and we may establish a scalar magnetic potential.

The value of H is

H =
I

2πρ
aφ

where I is the total current flowing in the az direction in the inner conductor. We find

Vm by integrating the appropriate component of the gradient. Applying (43),

I

2πρ
= −∇Vm

∣

∣

∣

φ
= −

1

ρ

∂Vm

∂φ

or

∂Vm

∂φ
= −

I

2π

Figure 7.18 The scalar magnetic potential Vm is a

multivalued function of φ in the region a < ρ < b. The

electrostatic potential is always single valued.
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Thus,

Vm = −
I

2π
φ

where the constant of integration has been set equal to zero. What value of potential

do we associate with point P , where φ = π/4? If we let Vm be zero at φ = 0 and

proceed counterclockwise around the circle, the magnetic potential goes negative

linearly. When we have made one circuit, the potential is −I , but that was the point

at which we said the potential was zero a moment ago. At P , then, φ = π/4, 9π/4,

17π/4, . . . , or −7π/4, −15π/4, −23π/4, . . . , or

VmP =
I

2π

(

2n − 1
4

)

π (n = 0, ±1, ±2, . . .)

or

VmP = I
(

n − 1
8

)

(n = 0, ±1, ±2, . . .)

The reason for this multivaluedness may be shown by a comparison with the

electrostatic case. There, we know that

∇ × E = 0
∮

E · dL = 0

and therefore the line integral

Vab = −
∫ a

b

E · dL

is independent of the path. In the magnetostatic case, however,

∇ × H = 0 (wherever J = 0)

but
∮

H · dL = I

even if J is zero along the path of integration. Every time we make another complete

lap around the current, the result of the integration increases by I . If no current I

is enclosed by the path, then a single-valued potential function may be defined. In

general, however,

Vm,ab = −
∫ a

b

H · dL (specified path) (45)

where a specific path or type of path must be selected. We should remember that the

electrostatic potential V is a conservative field; the magnetic scalar potential Vm is

not a conservative field. In our coaxial problem, let us erect a barrier8 at φ = π ; we

8 This corresponds to the more precise mathematical term “branch cut.”
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agree not to select a path that crosses this plane. Therefore, we cannot encircle I , and

a single-valued potential is possible. The result is seen to be

Vm = −
I

2π
φ (−π < φ < π)

and

VmP = −
I

8

(

φ =
π

4

)

The scalar magnetic potential is evidently the quantity whose equipotential sur-

faces will form curvilinear squares with the streamlines of H in Figure 7.4. This is

one more facet of the analogy between electric and magnetic fields about which we

will have more to say in the next chapter.

Let us temporarily leave the scalar magnetic potential now and investigate a vector

magnetic potential. This vector field is one which is extremely useful in studying

radiation from antennas (as we will find in Chapter 14) as well as radiation leakage

from transmission lines, waveguides, and microwave ovens. The vector magnetic

potential may be used in regions where the current density is zero or nonzero, and we

shall also be able to extend it to the time-varying case later.

Our choice of a vector magnetic potential is indicated by noting that

∇ · B = 0

Next, a vector identity that we proved in Section 7.4 shows that the divergence of the

curl of any vector field is zero. Therefore, we select

B = ∇ × A (46)

where A signifies a vector magnetic potential, and we automatically satisfy the con-

dition that the magnetic flux density shall have zero divergence. The H field is

H =
1

µ0

∇ × A

and

∇ × H = J =
1

µ0

∇ × ∇ × A

The curl of the curl of a vector field is not zero and is given by a fairly complicated

expression,9 which we need not know now in general form. In specific cases for which

the form of A is known, the curl operation may be applied twice to determine the

current density.

9 ∇ × ∇ × A ≡ ∇(∇ · A) − ∇2A. In rectangular coordinates, it may be shown that ∇2A ≡ ∇2Ax ax +
∇2Ayay + ∇2Azaz . In other coordinate systems, ∇2A may be found by evaluating the second-order

partial derivatives in ∇2A = ∇(∇ · A) − ∇ ×∇ × A.
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Equation (46) serves as a useful definition of the vector magnetic potential A.

Because the curl operation implies differentiation with respect to a length, the units

of A are webers per meter.

As yet we have seen only that the definition for A does not conflict with any

previous results. It still remains to show that this particular definition can help us to

determine magnetic fields more easily. We certainly cannot identify A with any easily

measured quantity or history-making experiment.

We will show in Section 7.7 that, given the Biot-Savart law, the definition of B,

and the definition of A, A may be determined from the differential current elements by

A =
∮

µ0 I dL

4πR
(47)

The significance of the terms in (47) is the same as in the Biot-Savart law; a direct

current I flows along a filamentary conductor of which any differential length dL is

distant R from the point at which A is to be found. Because we have defined A only

through specification of its curl, it is possible to add the gradient of any scalar field

to (47) without changing B or H, for the curl of the gradient is identically zero. In

steady magnetic fields, it is customary to set this possible added term equal to zero.

The fact that A is a vector magnetic potential is more apparent when (47) is

compared with the similar expression for the electrostatic potential,

V =
∫

ρLdL

4πε0 R

Each expression is the integral along a line source, in one case line charge and in the

other case line current; each integrand is inversely proportional to the distance from

the source to the point of interest; and each involves a characteristic of the medium

(here free space), the permeability or the permittivity.

Equation (47) may be written in differential form,

dA =
µ0 I dL

4π R
(48)

if we again agree not to attribute any physical significance to any magnetic fields we

obtain from (48) until the entire closed path in which the current flows is considered.

With this reservation, let us go right ahead and consider the vector magnetic

potential field about a differential filament. We locate the filament at the origin in free

space, as shown in Figure 7.19, and allow it to extend in the positive z direction so

that dL = dz az . We use cylindrical coordinates to find dA at the point (ρ, φ, z):

dA =
µ0 I dz az

4π
√

ρ2 + z2

or

dAz =
µ0 I dz

4π
√

ρ2 + z2
dAφ = 0 dAρ = 0 (49)
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Figure 7.19 The differential current

element I dzaz at the origin establishes the

differential vector magnetic potential field,

dA =
µ0 I dzaz

4π
√

ρ2 + z2
at P(ρ, φ, z).

We note that the direction of dA is the same as that of I dL. Each small section

of a current-carrying conductor produces a contribution to the total vector magnetic

potential which is in the same direction as the current flow in the conductor. The

magnitude of the vector magnetic potential varies inversely with the distance to the

current element, being strongest in the neighborhood of the current and gradually

falling off to zero at distant points. Skilling10 describes the vector magnetic potential

field as “like the current distribution but fuzzy around the edges, or like a picture of

the current out of focus.”

In order to find the magnetic field intensity, we must take the curl of (49) in

cylindrical coordinates, leading to

dH =
1

µ0

∇ × dA =
1

µ0

(

−
∂dAz

∂ρ

)

aφ

or

dH =
I dz

4π

ρ

(ρ2 + z2)3/2
aφ

which is easily shown to be the same as the value given by the Biot-Savart law.

Expressions for the vector magnetic potential A can also be obtained for a current

source which is distributed. For a current sheet K, the differential current element

becomes

I dL = K dS

In the case of current flow throughout a volume with a density J, we have

I dL = J dν

10 See the References at the end of the chapter.
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In each of these two expressions the vector character is given to the current. For the

filamentary element it is customary, although not necessary, to use I dL instead of

I dL . Since the magnitude of the filamentary element is constant, we have chosen

the form which allows us to remove one quantity from the integral. The alternative

expressions for A are then

A =
∫

S

µ0K dS

4πR
(50)

and

A =
∫

vol

µ0J dν

4πR
(51)

Equations (47), (50), and (51) express the vector magnetic potential as an inte-

gration over all of its sources. From a comparison of the form of these integrals with

those which yield the electrostatic potential, it is evident that once again the zero ref-

erence for A is at infinity, for no finite current element can produce any contribution

as R → ∞. We should remember that we very seldom used the similar expressions

for V ; too often our theoretical problems included charge distributions that extended

to infinity, and the result would be an infinite potential everywhere. Actually, we cal-

culated very few potential fields until the differential form of the potential equation

was obtained, ∇2V = −ρν/ε, or better yet, ∇2V = 0. We were then at liberty to

select our own zero reference.

The analogous expressions for A will be derived in the next section, and an

example of the calculation of a vector magnetic potential field will be completed.

D7.8. A current sheet, K = 2.4az A/m, is present at the surface ρ = 1.2 in

free space. (a) Find H for ρ > 1.2. Find Vm at P(ρ = 1.5, φ = 0.6π, z = 1) if:

(b) Vm = 0 at φ = 0 and there is a barrier at φ = π ; (c) Vm = 0 at φ = 0 and

there is a barrier at φ = π/2; (d) Vm = 0 at φ = π and there is a barrier at φ = 0;

(e) Vm = 5 V at φ = π and there is a barrier at φ = 0.8π .

Ans.
2.88

ρ
aφ ; −5.43 V; 12.7 V; 3.62 V; −9.48 V

D7.9. The value of A within a solid nonmagnetic conductor of radius a car-

rying a total current I in the az direction may be found easily. Using the

known value of H or B for ρ < a, then (46) may be solved for A. Select

A = (µ0 I ln 5)/2π at ρ = a (to correspond with an example in the next sec-

tion) and find A at ρ =: (a) 0; (b) 0.25a; (c) 0.75a; (d) a.

Ans. 0.422I az µWb/m; 0.416I az µWb/m; 0.366I az µWb/m; 0.322I az µWb/m
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7.7 DERIVATION OF THE
STEADY-MAGNETIC-FIELD LAWS

We will now supply the promised proofs of the several relationships between the

magnetic field quantities. All these relationships may be obtained from the definitions

of H,

H =
∮

I dL × aR

4πR2
(3)

of B (in free space),

B = µ0H (32)

and of A,

B = ∇ × A (46)

Let us first assume that we may express A by the last equation of Section 7.6,

A =
∫

vol

µ0J dν

4πR
(51)

and then demonstrate the correctness of (51) by showing that (3) follows. First, we

should add subscripts to indicate the point at which the current element is located

(x1, y1, z1) and the point at which A is given (x2, y2, z2). The differential volume

element dν is then written dν1 and in rectangular coordinates would be dx1 dy1 dz1.

The variables of integration are x1, y1, and z1. Using these subscripts, then,

A2 =
∫

vol

µ0J1dν1

4πR12

(52)

From (32) and (46) we have

H =
B

µ0

=
∇ × A

µ0

(53)

To show that (3) follows from (52), it is necessary to substitute (52) into (53). This

step involves taking the curl of A2, a quantity expressed in terms of the variables x2,

y2, and z2, and the curl therefore involves partial derivatives with respect to x2, y2, and

z2. We do this, placing a subscript on the del operator to remind us of the variables

involved in the partial differentiation process,

H2 =
∇2 × A2

µ0

=
1

µ0

∇2 ×
∫

vol

µ0J1dν1

4πR12

The order of partial differentiation and integration is immaterial, and µ0/4π is

constant, allowing us to write

H2 =
1

4π

∫

vol

∇2 ×
J1dν1

R12

The curl operation within the integrand represents partial differentiation with

respect to x2, y2, and z2. The differential volume element dν1 is a scalar and a function
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only of x1, y1, and z1. Consequently, it may be factored out of the curl operation as

any other constant, leaving

H2 =
1

4π

∫

vol

(

∇2 ×
J1

R12

)

dν1 (54)

The curl of the product of a scalar and a vector is given by an identity which may

be checked by expansion in rectangular coordinates or obtained from Appendix A.3,

∇ × (SV) ≡ (∇S) × V + S(∇ × V) (55)

This identity is used to expand the integrand of (54),

H2 =
1

4π

∫

vol

[(

∇2

1

R12

)

× J1 +
1

R12

(∇2 × J1)

]

dν1 (56)

The second term of this integrand is zero because ∇2 × J1 indicates partial deriva-

tives of a function of x1, y1, and z1, taken with respect to the variables x2, y2, and z2;

the first set of variables is not a function of the second set, and all partial derivatives

are zero.

The first term of the integrand may be determined by expressing R12 in terms of

the coordinate values,

R12 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

and taking the gradient of its reciprocal. Problem 7.42 shows that the result is

∇2

1

R12

= −
R12

R3
12

= −
aR12

R2
12

Substituting this result into (56), we have

H2 = −
1

4π

∫

vol

aR12 × J1

R2
12

dν1

or

H2 =
∫

vol

J1 × aR12

4πR2
12

dν1

which is the equivalent of (3) in terms of current density. Replacing J1 dν1 by I1 dL1,

we may rewrite the volume integral as a closed line integral,

H2 =
∮

I1dL1 × aR12

4πR2
12

Equation (51) is therefore correct and agrees with the three definitions (3), (32),

and (46).

Next we will prove Ampère’s circuital law in point form,

∇ × H = J (28)

Combining (28), (32), and (46), we obtain

∇ × H = ∇ ×
B

µ0

=
1

µ0

∇ × ∇ × A (57)
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We now need the expansion in rectangular coordinates for ∇ × ∇ × A. Performing

the indicated partial differentiations and collecting the resulting terms, we may write

the result as

∇ × ∇ × A ≡ ∇(∇ · A) − ∇2
A (58)

where

∇2
A ≡ ∇2 Ax ax + ∇2 Ayay + ∇2 Azaz (59)

Equation (59) is the definition (in rectangular coordinates) of the Laplacian of a

vector.

Substituting (58) into (57), we have

∇ × H =
1

µ0

[∇(∇ · A) − ∇2
A] (60)

and now require expressions for the divergence and the Laplacian of A.

We may find the divergence of A by applying the divergence operation to (52),

∇2 · A2 =
µ0

4π

∫

vol

∇2 ·

J1

R12

dν1 (61)

and using the vector identity (44) of Section 4.8,

∇ · (SV) ≡ V · (∇S) + S(∇ · V)

Thus,

∇2 · A2 =
µ0

4π

∫

vol

[

J1 ·

(

∇2

1

R12

)

+
1

R12

(∇2 · J1)

]

dν1 (62)

The second part of the integrand is zero because J1 is not a function of x2, y2,

and z2.

We have already used the result that ∇2(1/R12) = −R12/R3
12, and it is just as

easily shown that

∇1

1

R12

=
R12

R3
12

or that

∇1

1

R12

= −∇2

1

R12

Equation (62) can therefore be written as

∇2 · A2 =
µ0

4π

∫

vol

[

−J1 ·

(

∇1

1

R12

)]

dν1

and the vector identity applied again,

∇2 · A2 =
µ0

4π

∫

vol

[

1

R12

(∇1 · J1) − ∇1 ·

(

J1

R12

)]

dν1 (63)
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Because we are concerned only with steady magnetic fields, the continuity equa-

tion shows that the first term of (63) is zero. Application of the divergence theorem

to the second term gives

∇2 · A2 = −
µ0

4π

∮

S1

J1

R12

· dS1

where the surface S1 encloses the volume throughout which we are integrating. This

volume must include all the current, for the original integral expression for A was an

integration such as to include the effect of all the current. Because there is no current

outside this volume (otherwise we should have had to increase the volume to include

it), we may integrate over a slightly larger volume or a slightly larger enclosing surface

without changing A. On this larger surface the current density J1 must be zero, and

therefore the closed surface integral is zero, since the integrand is zero. Hence the

divergence of A is zero.

In order to find the Laplacian of the vector A, let us compare the x component

of (51) with the similar expression for electrostatic potential,

Ax =
∫

vol

µ0 Jx dν

4πR
V =

∫

vol

ρν dν

4πε0 R

We note that one expression can be obtained from the other by a straightforward

change of variable, Jx for ρν , µ0 for 1/ε0, and Ax for V . However, we have derived

some additional information about the electrostatic potential which we shall not have

to repeat now for the x component of the vector magnetic potential. This takes the

form of Poisson’s equation,

∇2V = −
ρν

ε0

which becomes, after the change of variables,

∇2 Ax = −µ0 Jx

Similarly, we have

∇2 Ay = −µ0 Jy

and

∇2 Az = −µ0 Jz

or

∇2
A = −µ0J (64)

Returning to (60), we can now substitute for the divergence and Laplacian of A

and obtain the desired answer,

∇ × H = J (28)

We have already shown the use of Stokes’ theorem in obtaining the integral form of

Ampère’s circuital law from (28) and need not repeat that labor here.
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We thus have succeeded in showing that every result we have essentially pulled

from thin air11 for magnetic fields follows from the basic definitions of H, B, and A.

The derivations are not simple, but they should be understandable on a step-by-step

basis.

Finally, let us return to (64) and make use of this formidable second-order vec-

tor partial differential equation to find the vector magnetic potential in one simple

example. We select the field between conductors of a coaxial cable, with radii of a

and b as usual, and current I in the az direction in the inner conductor. Between the

conductors, J = 0, and therefore

∇2
A = 0

We have already been told (and Problem 7.44 gives us the opportunity to check the

results for ourselves) that the vector Laplacian may be expanded as the vector sum of

the scalar Laplacians of the three components in rectangular coordinates,

∇2
A = ∇2 Ax ax + ∇2 Ayay + ∇2 Azaz

but such a relatively simple result is not possible in other coordinate systems. That is,

in cylindrical coordinates, for example,

∇2
A 	= ∇2 Aρaρ + ∇2 Aφaφ + ∇2 Azaz

However, it is not difficult to show for cylindrical coordinates that the z component

of the vector Laplacian is the scalar Laplacian of the z component of A, or

∇2
A

∣

∣

∣

z
= ∇2 Az (65)

and because the current is entirely in the z direction in this problem, A has only a

z component. Therefore,

∇2 Az = 0

or

1

ρ

∂

∂ρ

(

ρ
∂ Az

∂ρ

)

+
1

ρ2

∂2 Az

∂φ2
+

∂2 Az

∂z2
= 0

Thinking symmetrical thoughts about (51) shows us that Az is a function only of ρ,

and thus

1

ρ

d

dρ

(

ρ
d Az

dρ

)

= 0

We have solved this equation before, and the result is

Az = C1 ln ρ + C2

If we choose a zero reference at ρ = b, then

Az = C1 ln
ρ

b

11 Free space.
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In order to relate C1 to the sources in our problem, we may take the curl of A,

∇ × A = −
∂ Az

∂ρ
aφ = −

C1

ρ
aφ = B

obtain H,

H = −
C1

µ0ρ
aφ

and evaluate the line integral,
∮

H · dL = I =
∫ 2π

0

−
C1

µ0ρ
aφ · ρ dφ aφ = −

2πC1

µ0

Thus

C1 = −
µ0 I

2π

or

Az =
µ0 I

2π
ln

b

ρ
(66)

and

Hφ =
I

2πρ

as before. A plot of Az versus ρ for b = 5a is shown in Figure 7.20; the decrease

of |A| with distance from the concentrated current source that the inner conductor

represents is evident. The results of Problem D7.9 have also been added to Figure 7.20.

The extension of the curve into the outer conductor is left as Problem 7.43.

It is also possible to find Az between conductors by applying a process some of

us informally call “uncurling.” That is, we know H or B for the coax, and we may

Figure 7.20 The vector magnetic potential is shown

within the inner conductor and in the region between

conductors for a coaxial cable with b = 5a carrying I

in the az direction. Az = 0 is arbitrarily selected at ρ = b.
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therefore select the φ component of ∇ × A = B and integrate to obtain Az . Try it,

you’ll like it!

D7.10. Equation (66) is obviously also applicable to the exterior of any con-

ductor of circular cross section carrying a current I in the az direction in free

space. The zero reference is arbitrarily set at ρ = b. Now consider two con-

ductors, each of 1 cm radius, parallel to the z axis with their axes lying in

the x = 0 plane. One conductor whose axis is at (0, 4 cm, z) carries 12 A

in the az direction; the other axis is at (0,−4 cm, z) and carries 12 A in the

−az direction. Each current has its zero reference for A located 4 cm from its

axis. Find the total A field at: (a) (0, 0, z); (b) (0, 8 cm, z); (c) (4 cm, 4 cm, z);

(d) (2 cm, 4 cm, z).

Ans. 0; 2.64 µWb/m; 1.93 µWb/m; 3.40 µWb/m
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CHAPTER 7 PROBLEMS

7.1 (a) Find H in rectangular components at P(2, 3, 4) if there is a current

filament on the z axis carrying 8 mA in the az direction. (b) Repeat if the

filament is located at x = −1, y = 2. (c) Find H if both filaments are present.

7.2 A filamentary conductor is formed into an equilateral triangle with sides of

length � carrying current I . Find the magnetic field intensity at the center of

the triangle.

7.3 Two semi-infinite filaments on the z axis lie in the regions −∞ < z < −a

and a < z < ∞. Each carries a current I in the az direction. (a) Calculate H

as a function of ρ and φ at z = 0. (b) What value of a will cause the

magnitude of H at ρ = 1, z = 0, to be one-half the value obtained for an

infinite filament?

7.4 Two circular current loops are centered on the z axis at z = ±h. Each loop

has radius a and carries current I in the aφ direction. (a) Find H on the z axis

over the range −h < z < h. Take I = 1 A and plot |H| as a function of z/a if
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Figure 7.21 See Problem 7.5.

(b) h = a/4; (c) h = a/2; (d) h = a. Which choice for h gives the most

uniform field? These are called Helmholtz coils (of a single turn each in this

case), and are used in providing uniform fields.

7.5 The parallel filamentary conductors shown in Figure 7.21 lie in free space.

Plot |H| versus y, −4 < y < 4, along the line x = 0, z = 2.

7.6 A disk of radius a lies in the xy plane, with the z axis through its center.

Surface charge of uniform density ρs lies on the disk, which rotates about

the z axis at angular velocity 
 rad/s. Find H at any point on the z axis.

7.7 A filamentary conductor carrying current I in the az direction extends along

the entire negative z axis. At z = 0 it connects to a copper sheet that fills the

x > 0, y > 0 quadrant of the xy plane. (a) Set up the Biot-Savart law and

find H everywhere on the z axis; (b) repeat part (a), but with the copper sheet

occupying the entire xy plane (Hint: express aφ in terms of ax and ay and

angle φ in the integral).

7.8 For the finite-length current element on the z axis, as shown in Figure 7.5,

use the Biot-Savart law to derive Eq. (9) of Section 7.1.

7.9 A current sheet K = 8ax A/m flows in the region −2 < y < 2 in the plane

z = 0. Calculate H at P(0, 0, 3).

7.10 A hollow spherical conducting shell of radius a has filamentary connections

made at the top (r = a, θ = 0) and bottom (r = a, θ = π ). A direct current I

flows down the upper filament, down the spherical surface, and out the lower

filament. Find H in spherical coordinates (a) inside and (b) outside the

sphere.

7.11 An infinite filament on the z axis carries 20π mA in the az direction. Three

az-directed uniform cylindrical current sheets are also present: 400 mA/m at


