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of an inward normal to the surface of the page. If the velocity of water does not change
as we go up- or downstream and also shows no variation as we go across the river
(or even if it decreases in the same fashion toward either bank), then this component
is the only component present at the center of the stream, and the curl of the water
velocity has a direction into the page.

In Figure 7.14b, the streamlines of the magnetic field intensity about an infinitely
long filamentary conductor are shown. The curl meter placed in this field of curved
lines shows that a larger number of blades have a clockwise force exerted on them
but that this force is in general smaller than the counterclockwise force exerted on
the smaller number of blades closer to the wire. It seems possible that if the curvature
of the streamlines is correct and also if the variation of the field strength is just right,
the net torque on the paddle wheel may be zero. Actually, the paddle wheel does not
rotate in this case, for since H = (I /27 p)ag, we may substitute into (25) obtaining

oH, 19(pH,
curl H = ——¢ap — (pHy)
0z o 0p

a, =

As an example of the evaluation of curl H from the definition and of the evaluation of
another line integral, suppose that H = 0.2z%a, for z > 0, and H = 0 elsewhere, as
shown in Figure 7.15. Calculate ¢ H - dL about a square path with side d, centered
at (0, 0, z1) in the y = O plane where z; > d/2.

Figure 7.15 A square path of side d with its center on the
zZ axis at z = z¢ is used to evaluate 55 H - dL and find curl H.
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Solution. We evaluate the line integral of H along the four segments, beginning at
the top:
jﬁﬂ-dL =02(z1 +3d)’d+0—-02(z, — 3d)’d +0

= 0.4z7,d>

In the limit as the area approaches zero, we find

. H-dL . 0.4z,d?
R i

The other components are zero, so V x H = 0.4z;a,.

To evaluate the curl without trying to illustrate the definition or the evaluation of
a line integral, we simply take the partial derivative indicated by (23):

ay ay a;

0 0 0 9
VxH=| —

2 —
ox 9y 9z7]= 5(0.22 )a, = 0.4za,
0222 0

which checks with the preceding result when z = z;.

Returning now to complete our original examination of the application of
Ampere’s circuital law to a differential-sized path, we may combine (18)—(20), (22),
and (24),

oH, oH oH, 0H,
cul H=VxH=|——-—2)a, + - — )a,
ay 0z 0z ax

oH,  oH,
+ = - a, =] 27
dx dy

and write the point form of Ampere’s circuital law,

VxH=]J (28)

This is the second of Maxwell’s four equations as they apply to non-time-varying

conditions. We may also write the third of these equations at this time; it is the point
form of { E-dL =0, or

The fourth equation appears in Section 7.5.

(29)
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D7.4. (a) Evaluate the closed line integral of H about the rectangular path
P1(2,3,4) to P,(4,3,4) to P3(4,3, 1) to P4(2,3,1) to Py, given H = 3za, —
2x%a_, A/m. (b) Determine the quotient of the closed line integral and the area
enclosed by the path as an approximation to (V x H),. (c) Determine (V x H),
at the center of the area.

Ans. 354 A; 59 A/m?; 57 A/m?

D7.5. Calculate the value of the vector current density: (a) in rectangular
coordinates at P4(2,3,4) if H = xZZay — yzxaz; (b) in cylindrical coordi-

2
nates at Pg(1.5,90°, 0.5)if H = —(cos 0.2¢)a,; (c) in spherical coordinates at
P

1
Pc(2,30°,20°) if H= ——a,.
sin &

Ans. —16a, +9a, + 16a, A/m?; 0.055a, A/m?; a, A/m?

7.4 STOKES’ THEOREM

Although Section 7.3 was devoted primarily to a discussion of the curl operation,
the contribution to the subject of magnetic fields should not be overlooked. From
Ampere’s circuital law we derived one of Maxwell’s equations, V x H = J. This
latter equation should be considered the point form of Ampere’s circuital law and
applies on a “per-unit-area” basis. In this section we shall again devote a major share
of the material to the mathematical theorem known as Stokes’ theorem, but in the
process we will show that we may obtain Ampere’s circuital law from V x H = J.
In other words, we are then prepared to obtain the integral form from the point form
or to obtain the point form from the integral form.

Consider the surface S of Figure 7.16, which is broken up into incremental
surfaces of area AS. If we apply the definition of the curl to one of these incremental
surfaces, then

FH-dLxg
AS
where the N subscript again indicates the right-hand normal to the surface. The
subscript on dL s g indicates that the closed path is the perimeter of an incremental
area AS. This result may also be written

fH-dLys
AS

= (VxH)y

= (VxH)-ay
or

fH-dLAS = (VxH)-ayAS =(VxH)-AS
where ay is a unit vector in the direction of the right-hand normal to AS.

Now let us determine this circulation for every AS comprising S and sum the re-
sults. As we evaluate the closed line integral for each A S, some cancellation will occur



CHAPTER 7 The Steady Magnetic Field

ay

AS

AS
AS

Figure 7.16 The sum of the closed line integrals
about the perimeter of every AS'is the same as the
closed line integral about the perimeter of S because
of cancellation on every interior path.

because every interior wall is covered once in each direction. The only boundaries
on which cancellation cannot occur form the outside boundary, the path enclosing S.
Therefore we have

?{H-dLE/(VxH)-dS (30)
S

where dL is taken only on the perimeter of S.
Equation (30) is an identity, holding for any vector field, and is known as Stokes’
theorem.

A numerical example may help to illustrate the geometry involved in Stokes’ theorem.
Consider the portion of a sphere shown in Figure 7.17. The surface is specified by r =
4,0 <6 <0.17,0 < ¢ < 0.37, and the closed path forming its perimeter is com-
posed of three circular arcs. We are given the field H = 6r sin ¢a, + 18r sin 6 cos ¢ay
and are asked to evaluate each side of Stokes’ theorem.

Solution. The first path segment is described in spherical coordinates by r = 4,0 <
0 < 0.1, ¢ = 0; the second one by r = 4,0 = 0.17,0 < ¢ < 0.37; and the third
byr =4,0 <60 <0.1m, ¢ = 0.37. The differential path element dL is the vector
sum of the three differential lengths of the spherical coordinate system first discussed
in Section 1.9,

dL =dra, +rdfag+rsinfdeay
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Figure 7.17 A portion of a spherical cap is
used as a surface and a closed path to illustrate
Stokes’ theorem.

The first term is zero on all three segments of the path since r = 4 and dr = 0,
the second is zero on segment 2 as 6 is constant, and the third term is zero on both
segments 1 and 3. Thus,

%H-dL=/ngd0+/H¢rsin9d¢+/H9rd6
1 2 3

Because Hy = 0, we have only the second integral to evaluate,

0.37
%H-dL = / [18(4)sin 0.1 cos ¢4 sin0.17d¢p
0

= 288sin”0.17 sin0.37 = 22.2 A

‘We next attack the surface integral. First, we use (26) to find
1 1 1
VxH=——(36rsinf cosfcosp)a, + —| ——67r cos¢ — 36r sinf cos ¢ |ay
r sinf r \ sinf
Because dS = r2sin6 d6 d¢ a,, the integral is

0.37 p0.17
/(VxH)-dS: / / (36cosO cosp)16sinb db d¢
N 0 0

0.37 0.17
:/ 576 (4 sin’0) ‘0 cos ¢ dop
0

= 288sin’ 0.1 sin0.37 =222 A
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Thus, the results check Stokes’ theorem, and we note in passing that a current of
22.2 A is flowing upward through this section of a spherical cap.

205

Next, let us see how easy it is to obtain Ampere’s circuital law from V x H = J.
We merely have to dot each side by dS, integrate each side over the same (open)
surface S, and apply Stokes’ theorem:

/(VXH)-dszfj-dszny-dL
N S

The integral of the current density over the surface S is the total current / passing
through the surface, and therefore

This short derivation shows clearly that the current /, described as being “en-
closed by the closed path,” is also the current passing through any of the infinite
number of surfaces that have the closed path as a perimeter.

Stokes’ theorem relates a surface integral to a closed line integral. It should
be recalled that the divergence theorem relates a volume integral to a closed surface
integral. Both theorems find their greatest use in general vector proofs. As an example,
let us find another expression for V- V x A, where A represents any vector field. The
result must be a scalar (why?), and we may let this scalar be T, or

V-VxA=T

Multiplying by dv and integrating throughout any volume v,

/(V-VxA)du:/ T dv
vol vol

we first apply the divergence theorem to the left side, obtaining

f(VxA)-dS:/ T dv
N vol

The left side is the surface integral of the curl of A over the closed surface
surrounding the volume v. Stokes’ theorem relates the surface integral of the curl of
A over the open surface enclosed by a given closed path. If we think of the path as
the opening of a laundry bag and the open surface as the surface of the bag itself, we
see that as we gradually approach a closed surface by pulling on the drawstrings, the
closed path becomes smaller and smaller and finally disappears as the surface becomes
closed. Hence, the application of Stokes’ theorem to a closed surface produces a zero

result, and we have
/ Tdv=0
vol
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Because this is true for any volume, it is true for the differential volume dv,
Tdv=0
and therefore

T=0

V.-VxA=0 3D

Equation (31) is a useful identity of vector calculus.® Of course, it may also be
proven easily by direct expansion in rectangular coordinates.
Let us apply the identity to the non-time-varying magnetic field for which

VxH=]

or

This shows quickly that
vV-J=0

which is the same result we obtained earlier in the chapter by using the continuity
equation.

Before introducing several new magnetic field quantities in the following section,
we may review our accomplishments at this point. We initially accepted the Biot-
Savart law as an experimental result,

B ?g IdL x ag
- 47 R?

and tentatively accepted Ampere’s circuital law, subject to later proof,

From Ampere’s circuital law the definition of curl led to the point form of this same
law,

VxH=J]
We now see that Stokes’ theorem enables us to obtain the integral form of Ampere’s

circuital law from the point form.

D7.6. Evaluate both sides of Stokes’ theorem for the field H = 6xya, —
3yzay A/m and the rectangular path around the region,2 < x <5, -1 <y <
1, z = 0. Let the positive direction of dS be a,.

Ans. —126 A; —126 A

6 This and other vector identities are tabulated in Appendix A.3.
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7.5 MAGNETIC FLUX AND MAGNETIC
FLUX DENSITY

In free space, let us define the magnetic flux density B as

(free space only) (32)

where B is measured in webers per square meter (Wb/m?) or in a newer unit adopted
in the International System of Units, tesla (T). An older unit that is often used for
magnetic flux density is the gauss (G), where 1 T or IWb/m? is the same as 10, 000 G.
The constant (1 is not dimensionless and has the defined value for free space, in henrys
per meter (H/m), of

wo = 4m x 1077 H/m (33)

The name given to p is the permeability of free space.

We should note that since H is measured in amperes per meter, the weber is
dimensionally equal to the product of henrys and amperes. Considering the henry as
a new unit, the weber is merely a convenient abbreviation for the product of henrys
and amperes. When time-varying fields are introduced, it will be shown that a weber
is also equivalent to the product of volts and seconds.

The magnetic-flux-density vector B, as the name weber per square meter im-
plies, is a member of the flux-density family of vector fields. One of the possible
analogies between electric and magnetic fields” compares the laws of Biot-Savart and
Coulomb, thus establishing an analogy between H and E. The relations B = uoH
and D = ¢E then lead to an analogy between B and D. If B is measured in teslas or
webers per square meter, then magnetic flux should be measured in webers. Let us
represent magnetic flux by ® and define ® as the flux passing through any designated
area,

<I>:/B-dSWb (34)
bS]

Our analogy should now remind us of the electric flux W, measured in coulombs,
and of Gauss’s law, which states that the total flux passing through any closed surface
is equal to the charge enclosed,

q/:?gn-dszg
N

The charge Q is the source of the lines of electric flux and these lines begin and
terminate on positive and negative charges, respectively.

7 An alternate analogy is presented in Section 9.2.
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No such source has ever been discovered for the lines of magnetic flux. In the
example of the infinitely long straight filament carrying a direct current 7, the H field
formed concentric circles about the filament. Because B = uoH, the B field is of the
same form. The magnetic flux lines are closed and do not terminate on a “magnetic
charge.” For this reason Gauss’s law for the magnetic field is

%B-dS:O (35)
S

and application of the divergence theorem shows us that
V:-B=0 (36)

Equation (36) is the last of Maxwell’s four equations as they apply to static
electric fields and steady magnetic fields. Collecting these equations, we then have
for static electric fields and steady magnetic fields

VD = p,
VxE= 0
37
VxH= ]
V:B=0

To these equations we may add the two expressions relating D to E and B to H
in free space,

D = ¢FE (38)

D=aE
B = uoH (39)

We have also found it helpful to define an electrostatic potential,

E=-VV (40)

and we will discuss a potential for the steady magnetic field in the following section. In
addition, we extended our coverage of electric fields to include conducting materials
and dielectrics, and we introduced the polarization P. A similar treatment will be
applied to magnetic fields in the next chapter.

Returning to (37), it may be noted that these four equations specify the divergence
and curl of an electric and a magnetic field. The corresponding set of four integral
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equations that apply to static electric fields and steady magnetic fields is

fD-dS:Q:/ pudv

S vol

%E-dL:O

%H-dL:I:/J-dS
N

y{B-dS:O

S

Our study of electric and magnetic fields would have been much simpler if we
could have begun with either set of equations, (37) or (41). With a good knowledge
of vector analysis, such as we should now have, either set may be readily obtained
from the other by applying the divergence theorem or Stokes’ theorem. The various
experimental laws can be obtained easily from these equations.

As an example of the use of flux and flux density in magnetic fields, let us find
the flux between the conductors of the coaxial line of Figure 7.8a. The magnetic field
intensity was found to be

(41)

I
Hd):% (a < p<b)

and therefore

The magnetic flux contained between the conductors in a length d is the flux
crossing any radial plane extending from p = a to p = b and from, say, z = 0 to

z=d d pb

1
@:/B-dS:/ 'uia(z,-d,odzad,
s 0Ja 27mp
or
Id_ b
o =K, 2 (42)

2 a

This expression will be used later to obtain the inductance of the coaxial trans-
mission line.

D7.7. A solid conductor of circular cross section is made of a homogeneous
nonmagnetic material. If the radius @ = 1 mm, the conductor axis lies on the
z axis, and the total current in the a, directionis 20 A, find: (a) Hy at p = 0.5 mm;
(b) By at p = 0.8 mm; (c) the total magnetic flux per unit length inside the
conductor; (d) the total flux for p < 0.5 mm; (e) the total magnetic flux outside
the conductor.

Ans. 1592 A/m; 3.2 mT; 2 uWb/m; 0.5 uWhb; co
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7.6 THE SCALAR AND VECTOR
MAGNETIC POTENTIALS

The solution of electrostatic field problems is greatly simplified by the use of the
scalar electrostatic potential V. Although this potential possesses a very real physical
significance for us, it is mathematically no more than a stepping-stone which allows
us to solve a problem by several smaller steps. Given a charge configuration, we may
first find the potential and then from it the electric field intensity.

We should question whether or not such assistance is available in magnetic fields.
Can we define a potential function which may be found from the current distribution
and from which the magnetic fields may be easily determined? Can a scalar magnetic
potential be defined, similar to the scalar electrostatic potential? We will show in
the next few pages that the answer to the first question is yes, but the second must
be answered “sometimes.” Let us attack the second question first by assuming the
existence of a scalar magnetic potential, which we designate V,,, whose negative
gradient gives the magnetic field intensity

H=-VV,

The selection of the negative gradient provides a closer analogy to the electric potential
and to problems which we have already solved.

This definition must not conflict with our previous results for the magnetic field,
and therefore

VxH=J=Vx(=VV,)

However, the curl of the gradient of any scalar is identically zero, a vector identity
the proof of which is left for a leisure moment. Therefore, we see that if H is to be
defined as the gradient of a scalar magnetic potential, then current density must be
zero throughout the region in which the scalar magnetic potential is so defined. We
then have

H=-VV, J=0) (43)

Because many magnetic problems involve geometries in which the current-carrying
conductors occupy a relatively small fraction of the total region of interest, it is evident
that a scalar magnetic potential can be useful. The scalar magnetic potential is also
applicable in the case of permanent magnets. The dimensions of V,, are obviously
amperes.

This scalar potential also satisfies Laplace’s equation. In free space,

V:-B=uV-H=0
and hence

/’LOV ‘ (_va) =0
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or

V2V, =0 (J=0) (44)

We will see later that V,, continues to satisfy Laplace’s equation in homogeneous
magnetic materials; it is not defined in any region in which current density is present.

Although we shall consider the scalar magnetic potential to a much greater extent
in Chapter 8, when we introduce magnetic materials and discuss the magnetic circuit,
one difference between V and V,, should be pointed out now: V,, is not a single-valued
function of position. The electric potential V is single-valued; once a zero reference is
assigned, there is only one value of V associated with each point in space. Such is not
the case with V,,,. Consider the cross section of the coaxial line shown in Figure 7.18.
In the region a < p < b, J = 0, and we may establish a scalar magnetic potential.
The value of H is

1

=—a
2rp
where [ is the total current flowing in the a, direction in the inner conductor. We find
V,» by integrating the appropriate component of the gradient. Applying (43),

1 1 0V,

2mp 0 Mle T p 04
or

P(p, 7/4,0)

Figure 7.18 The scalar magnetic potential V,,, is a
multivalued function of ¢ in the regiona < p < b. The
electrostatic potential is always single valued.
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Thus,

V= -4
m — 277:

where the constant of integration has been set equal to zero. What value of potential
do we associate with point P, where ¢ = m/4? If we let V,, be zero at ¢ = 0 and
proceed counterclockwise around the circle, the magnetic potential goes negative
linearly. When we have made one circuit, the potential is —7, but that was the point
at which we said the potential was zero a moment ago. At P, then, ¢ = /4, 9 /4,
177/4,...,0or =T /4, —15m /4, =237 /4, ..., or

Vop = d 2 ! =0,+1,£2
mP_E(n_Z)n (n_ 3 ) 7-")

or
Vwp=1(n—3%) (=0%1,£2,..)

The reason for this multivaluedness may be shown by a comparison with the
electrostatic case. There, we know that

VXxE=0

fE-dL:O

Vabz—/ E.dL
b

and therefore the line integral

is independent of the path. In the magnetostatic case, however,

VxH=0 (whereverJ = 0)

even if J is zero along the path of integration. Every time we make another complete
lap around the current, the result of the integration increases by /. If no current /
is enclosed by the path, then a single-valued potential function may be defined. In
general, however,

but

Vin,ab = —/ H-dL (specified path) (45)
b

where a specific path or type of path must be selected. We should remember that the
electrostatic potential V is a conservative field; the magnetic scalar potential V,, is
not a conservative field. In our coaxial problem, let us erect a barrier® at ¢ = 7; we

8 This corresponds to the more precise mathematical term “branch cut.”
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agree not to select a path that crosses this plane. Therefore, we cannot encircle 7, and
a single-valued potential is possible. The result is seen to be

Vo=t (cm<¢p<m)
2

Vo o 1 ¢_rr
mP — 8 —4

The scalar magnetic potential is evidently the quantity whose equipotential sur-
faces will form curvilinear squares with the streamlines of H in Figure 7.4. This is
one more facet of the analogy between electric and magnetic fields about which we
will have more to say in the next chapter.

Letus temporarily leave the scalar magnetic potential now and investigate a vector
magnetic potential. This vector field is one which is extremely useful in studying
radiation from antennas (as we will find in Chapter 14) as well as radiation leakage
from transmission lines, waveguides, and microwave ovens. The vector magnetic
potential may be used in regions where the current density is zero or nonzero, and we
shall also be able to extend it to the time-varying case later.

Our choice of a vector magnetic potential is indicated by noting that

and

V:B=0

Next, a vector identity that we proved in Section 7.4 shows that the divergence of the
curl of any vector field is zero. Therefore, we select

where A signifies a vector magnetic potential, and we automatically satisfy the con-
dition that the magnetic flux density shall have zero divergence. The H field is

1
H=—VxA
o

and

VxH:J:LVxVxA
o
The curl of the curl of a vector field is not zero and is given by a fairly complicated
expression,” which we need not know now in general form. In specific cases for which
the form of A is known, the curl operation may be applied twice to determine the
current density.

9V xV xA=V(V-A) — V2A. In rectangular coordinates, it may be shown that VA = V?A .a, +
VZAAV a, + V2A_a,. In other coordinate systems, VZA may be found by evaluating the second-order
partial derivatives in VA = V(V-A) — V x V x A.

213



214

ENGINEERING ELECTROMAGNETICS

Equation (46) serves as a useful definition of the vector magnetic potential A.
Because the curl operation implies differentiation with respect to a length, the units
of A are webers per meter.

As yet we have seen only that the definition for A does not conflict with any
previous results. It still remains to show that this particular definition can help us to
determine magnetic fields more easily. We certainly cannot identify A with any easily
measured quantity or history-making experiment.

We will show in Section 7.7 that, given the Biot-Savart law, the definition of B,
and the definition of A, A may be determined from the differential current elements by

IdL
A:%“ZZ (47)
,

The significance of the terms in (47) is the same as in the Biot-Savart law; a direct
current / flows along a filamentary conductor of which any differential length dL is
distant R from the point at which A is to be found. Because we have defined A only
through specification of its curl, it is possible to add the gradient of any scalar field
to (47) without changing B or H, for the curl of the gradient is identically zero. In
steady magnetic fields, it is customary to set this possible added term equal to zero.

The fact that A is a vector magnetic potential is more apparent when (47) is
compared with the similar expression for the electrostatic potential,

V= / prdL
4megR
Each expression is the integral along a line source, in one case line charge and in the
other case line current; each integrand is inversely proportional to the distance from
the source to the point of interest; and each involves a characteristic of the medium
(here free space), the permeability or the permittivity.
Equation (47) may be written in differential form,
dA = Mol dl (48)
47 R
if we again agree not to attribute any physical significance to any magnetic fields we
obtain from (48) until the entire closed path in which the current flows is considered.
With this reservation, let us go right ahead and consider the vector magnetic
potential field about a differential filament. We locate the filament at the origin in free
space, as shown in Figure 7.19, and allow it to extend in the positive z direction so
that dL. = dz a,. We use cylindrical coordinates to find dA at the point (p, ¢, 2):

ldza,
dA — Mol dZ a;
4m/ p? + 72
or
/L()Idz

dA, =

T an/pr+ 22

dAy =0 dA,=0 (49)
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Free space

R= p2+z2

\ p P(p, $,2)

ldL=1dz a,

T

N

¢

Figure 7.19 The differential current
element | dza, at the origin establishes the
differential vector magnetic potential field,

/
an= P19Z b b )

4/ p? + 22

We note that the direction of dA is the same as that of 7 dL. Each small section
of a current-carrying conductor produces a contribution to the total vector magnetic
potential which is in the same direction as the current flow in the conductor. The
magnitude of the vector magnetic potential varies inversely with the distance to the
current element, being strongest in the neighborhood of the current and gradually
falling off to zero at distant points. Skilling'® describes the vector magnetic potential
field as “like the current distribution but fuzzy around the edges, or like a picture of
the current out of focus.”

In order to find the magnetic field intensity, we must take the curl of (49) in
cylindrical coordinates, leading to

1 1 ddA
dH:—deA:—(— Z)%
Ko Ko ap

or

1dz 0
dH= ——+——
dn (02 2R

which is easily shown to be the same as the value given by the Biot-Savart law.

Expressions for the vector magnetic potential A can also be obtained for a current
source which is distributed. For a current sheet K, the differential current element
becomes

IdL =KdS
In the case of current flow throughout a volume with a density J, we have

IdL =Jdv

10 See the References at the end of the chapter.

@
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In each of these two expressions the vector character is given to the current. For the
filamentary element it is customary, although not necessary, to use I dL instead of
IdL. Since the magnitude of the filamentary element is constant, we have chosen
the form which allows us to remove one quantity from the integral. The alternative
expressions for A are then

K dS
A— / “Z = (50)
IS TT.
and
A= / poJdv (51)
vol 47TR

Equations (47), (50), and (51) express the vector magnetic potential as an inte-
gration over all of its sources. From a comparison of the form of these integrals with
those which yield the electrostatic potential, it is evident that once again the zero ref-
erence for A is at infinity, for no finite current element can produce any contribution
as R — oo. We should remember that we very seldom used the similar expressions
for V; too often our theoretical problems included charge distributions that extended
to infinity, and the result would be an infinite potential everywhere. Actually, we cal-
culated very few potential fields until the differential form of the potential equation
was obtained, V2V = —py /€, or better yet, V2V = 0. We were then at liberty to
select our own zero reference.

The analogous expressions for A will be derived in the next section, and an
example of the calculation of a vector magnetic potential field will be completed.

D7.8. A current sheet, K = 2.4a, A/m, is present at the surface p = 1.2 in
free space. (a) Find H for p > 1.2. Find V,, at P(p = 1.5, ¢ = 0.67, z = 1) if:
(b) V,, =0 at ¢ = 0 and there is a barrierat ¢ = 7; (c) V,, = 0 at ¢ = 0 and
thereis abarrierat¢p = 7 /2;(d) V,, = 0at¢ = 7 and there is abarrierat ¢ = 0;
(e) V,, =5V at ¢ = 7 and there is a barrier at ¢ = 0.87.

2.88
Ans. —ay; —543V;12.7V;3.62V; —9.48V
P

D7.9. The value of A within a solid nonmagnetic conductor of radius a car-
rying a total current / in the a, direction may be found easily. Using the
known value of H or B for p < a, then (46) may be solved for A. Select
A = (uol In5)/2m at p = a (to correspond with an example in the next sec-
tion) and find A at p =: (a) 0; (b) 0.25a; (c¢) 0.75a; (d) a.

Ans. 0.422]a, uWb/m; 0.4167/a, uWb/m; 0.366/a, uWb/m; 0.3227a, uWb/m
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7.7 DERIVATION OF THE
STEADY-MAGNETIC-FIELD LAWS

We will now supply the promised proofs of the several relationships between the
magnetic field quantities. All these relationships may be obtained from the definitions

of H,
o fre
of B (in free space),
B = uoH (32)
and of A,
B=VxA (46)

Let us first assume that we may express A by the last equation of Section 7.6,

A:/ HoJ dv (51)
vol

4R

and then demonstrate the correctness of (51) by showing that (3) follows. First, we
should add subscripts to indicate the point at which the current element is located
(x1, y1, z1) and the point at which A is given (x,, y2, z2). The differential volume
element dv is then written dv; and in rectangular coordinates would be dx; dy, dz;.
The variables of integration are xi, y;, and z;. Using these subscripts, then,

d
Ay — / HoJrdvy (52)
vol 47TR12
From (32) and (46) we have
B VxA
H=— = (53)
Ho H“o

To show that (3) follows from (52), it is necessary to substitute (52) into (53). This

step involves taking the curl of A,, a quantity expressed in terms of the variables x»,

v2, and z,, and the curl therefore involves partial derivatives with respect to x,, y,, and

Z2. We do this, placing a subscript on the del operator to remind us of the variables

involved in the partial differentiation process,

H = Vi x Ay _ LVZ o f wod1dv

Mo Mo vol 47R12

The order of partial differentiation and integration is immaterial, and 1¢o/47 is

constant, allowing us to write

1 dv
H— o V2 y Jidv,
4 R12
The curl operation within the 1ntegrand represents partial differentiation with

respect to x», y», and z,. The differential volume element dv, is a scalar and a function
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only of x;, yi, and z;. Consequently, it may be factored out of the curl operation as
any other constant, leaving

1 Ji
H, = — V. — )d 54
P 4 vm< 2% Ru) . oY

The curl of the product of a scalar and a vector is given by an identity which may
be checked by expansion in rectangular coordinates or obtained from Appendix A.3,

Vx(SV)=(VS)xV+ SV xV) (55)
This identity is used to expand the integrand of (54),
1 1 1

H, = — V,— —(V d 56

2= V01|:< 2R12>XJ1+R12( 2XJ1)} vy (56)

The second term of this integrand is zero because V, x J; indicates partial deriva-
tives of a function of x, y;, and z;, taken with respect to the variables x;, y,, and z,;
the first set of variables is not a function of the second set, and all partial derivatives
are zero.

The first term of the integrand may be determined by expressing R, in terms of
the coordinate values,

R =2 —x1)> + (2 — y1)2 + (22 — 21)?

and taking the gradient of its reciprocal. Problem 7.42 shows that the result is

I Rp  agp
= —— = T2
Ri> R}, Rt
Substituting this result into (56), we have
1 agpp xJ
H=—— 13122 ldvl
4 vol R12
or
Jixa
H= [ =My,
vol 4JTR12

which is the equivalent of (3) in terms of current density. Replacing J; dv; by I; dL,
we may rewrite the volume integral as a closed line integral,

I,dL
sz% 1 1X23R12
47 R7,

Equation (51) is therefore correct and agrees with the three definitions (3), (32),
and (46).
Next we will prove Ampere’s circuital law in point form,

VxH=] (23)
Combining (28), (32), and (46), we obtain

B 1
VxH=Vx —=—VxVxA 67
Ho H“o
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We now need the expansion in rectangular coordinates for V x V x A. Performing
the indicated partial differentiations and collecting the resulting terms, we may write
the result as

| VxVxA=V(V-A)— VA | (58)

where

| V2A = VA, + V24,8, + VA, (59)

Equation (59) is the definition (in rectangular coordinates) of the Laplacian of a
vector.
Substituting (58) into (57), we have

1
VxH=—[V(V-A)— V?A] (60)
o
and now require expressions for the divergence and the Laplacian of A.

We may find the divergence of A by applying the divergence operation to (52),

Mo Ji
Vo Ay = — Voo —d 61
2 A= o 2 R U1 (61)

and using the vector identity (44) of Section 4.8,
V-SV) =V (VS +S(V-V)
Thus,

Ho 1 1
Vy-Ay = — |:J1 . <V2—> + (V2 'Jl):|dV1 (62)
47 Jool Rz Ry,
The second part of the integrand is zero because J; is not a function of x,, y»,
and z,.
We have already used the result that V,(1/R) = —Rlz/sz, and it is just as
easily shown that

1 R,
|1 = —%
Rz R?z
or that
1 1
Vie— =-Vo—
Ry Ri>

Equation (62) can therefore be written as

1
Vy- Ay = f—; [—Jl : (le—ﬂdvl
vol 12

and the vector identity applied again,

1
Vo Ay = et |:—(V1 J)—Vi- (;—1)}11)1 (63)

4 vol R12 12
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Because we are concerned only with steady magnetic fields, the continuity equa-
tion shows that the first term of (63) is zero. Application of the divergence theorem
to the second term gives

Mo f I s,
4 Si R 12
where the surface S encloses the volume throughout which we are integrating. This
volume must include all the current, for the original integral expression for A was an
integration such as to include the effect of all the current. Because there is no current
outside this volume (otherwise we should have had to increase the volume to include
it), we may integrate over a slightly larger volume or a slightly larger enclosing surface
without changing A. On this larger surface the current density J; must be zero, and
therefore the closed surface integral is zero, since the integrand is zero. Hence the
divergence of A is zero.

In order to find the Laplacian of the vector A, let us compare the x component
of (51) with the similar expression for electrostatic potential,

Jedv dv
Ax _ / MoJx V= / Pv
vol 4mR vol 4megR
We note that one expression can be obtained from the other by a straightforward
change of variable, J, for p,, o for 1/€y, and A, for V. However, we have derived
some additional information about the electrostatic potential which we shall not have

to repeat now for the x component of the vector magnetic potential. This takes the
form of Poisson’s equation,

Vo Ay =—

Pv
€0

ViV = —

which becomes, after the change of variables,

VA, = —pots
Similarly, we have

VA, = —poly
and

V2A, = —pol.
or

VA = —od (64)

Returning to (60), we can now substitute for the divergence and Laplacian of A
and obtain the desired answer,

VxH=] (28)

We have already shown the use of Stokes’ theorem in obtaining the integral form of
Ampere’s circuital law from (28) and need not repeat that labor here.



CHAPTER 7 The Steady Magnetic Field

We thus have succeeded in showing that every result we have essentially pulled
from thin air!! for magnetic fields follows from the basic definitions of H, B, and A.
The derivations are not simple, but they should be understandable on a step-by-step
basis.

Finally, let us return to (64) and make use of this formidable second-order vec-
tor partial differential equation to find the vector magnetic potential in one simple
example. We select the field between conductors of a coaxial cable, with radii of a
and b as usual, and current / in the a, direction in the inner conductor. Between the
conductors, J = 0, and therefore

VZA =0

We have already been told (and Problem 7.44 gives us the opportunity to check the
results for ourselves) that the vector Laplacian may be expanded as the vector sum of
the scalar Laplacians of the three components in rectangular coordinates,

VA = V?A,a, + V?Aja, + V?A.a,

but such a relatively simple result is not possible in other coordinate systems. That is,
in cylindrical coordinates, for example,

VZA # V2A,a, + V2 Asa, + V2Aa,

However, it is not difficult to show for cylindrical coordinates that the z component
of the vector Laplacian is the scalar Laplacian of the z component of A, or
VIA| =V?A
4
and because the current is entirely in the z direction in this problem, A has only a
z component. Therefore,

(65)

z
z

VZA. =0
or

19 [ 04, 1 024,  93%A,
p op P ap p? Ap? 972
Thinking symmetrical thoughts about (51) shows us that A, is a function only of p,

and thus
1d dA
pdp\" dp

We have solved this equation before, and the result is

A, =Cilnp+C,

If we choose a zero reference at p = b, then

0
Az:C1lnE

' Free space.
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In order to relate C; to the sources in our problem, we may take the curl of A,

0A C
VxA=— Za¢=——la¢,=B
ap o
obtain H,
C
H= ——1a¢
Hop
and evaluate the line integral,
2
C 2nC
fH.sz 1 =/ ——La;-pdpa, = ———
0 Hop Mo
Thus
1
c, = _Hol
2
or
I b
A =R, (66)
21 p
and
o — 1
o 2mp

as before. A plot of A, versus p for b = 5a is shown in Figure 7.20; the decrease
of |A| with distance from the concentrated current source that the inner conductor
represents is evident. The results of Problem D7.9 have also been added to Figure 7.20.
The extension of the curve into the outer conductor is left as Problem 7.43.

It is also possible to find A, between conductors by applying a process some of
us informally call “uncurling.” That is, we know H or B for the coax, and we may

ol
JT

A, (Wb/m)
Nj=
QU

pla

Figure 7.20 The vector magnetic potential is shown
within the inner conductor and in the region between
conductors for a coaxial cable with b = 5a carrying /
in the a; direction. A, = 0O is arbitrarily selected at p = b.
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therefore select the ¢ component of V x A = B and integrate to obtain A,. Try it,
you’ll like it!

D7.10. Equation (66) is obviously also applicable to the exterior of any con-
ductor of circular cross section carrying a current / in the a, direction in free
space. The zero reference is arbitrarily set at p = b. Now consider two con-
ductors, each of 1 cm radius, parallel to the z axis with their axes lying in
the x = O plane. One conductor whose axis is at (0,4 cm, z) carries 12 A
in the a, direction; the other axis is at (0, —4 cm, z) and carries 12 A in the
—a, direction. Each current has its zero reference for A located 4 cm from its
axis. Find the total A field at: (a) (0, 0, 2); (b) (0, 8cm, 2); (¢) (4cm, 4cm, z);
(d) 2cm, 4cm, z).

Ans. 0;2.64 ©Wb/m; 1.93 pWb/m; 3.40 £ Wb/m
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CHAPTER 7 PROBLEMS

7.1 i (a) Find H in rectangular components at P (2, 3, 4) if there is a current

filament on the z axis carrying 8 mA in the a, direction. (b) Repeat if the
filament is located at x = —1, y = 2. (¢) Find H if both filaments are present.

720 A filamentary conductor is formed into an equilateral triangle with sides of

length ¢ carrying current /. Find the magnetic field intensity at the center of
the triangle.

7.3 Two semi-infinite filaments on the z axis lie in the regions —00 < z < —a

and @ < z < o0o. Each carries a current / in the a, direction. (a) Calculate H
as a function of p and ¢ at z = 0. (b) What value of a will cause the
magnitude of H at p = 1, z = 0, to be one-half the value obtained for an
infinite filament?

741 Two circular current loops are centered on the z axis at z = 4h. Each loop

has radius a and carries current / in the a4 direction. (a) Find H on the z axis
over the range —h < z < h. Take I = 1 A and plot |H] as a function of z/a if
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7514

7.68

771

781

791

0,1,0)

Figure 7.21 See Problem 7.5.

(b)yh =a/4;(c) h =a/2; (d) h = a. Which choice for i gives the most
uniform field? These are called Helmholtz coils (of a single turn each in this
case), and are used in providing uniform fields.

The parallel filamentary conductors shown in Figure 7.21 lie in free space.
Plot |H| versus y, =4 < y < 4, along the linex =0, z = 2.

A disk of radius a lies in the xy plane, with the z axis through its center.
Surface charge of uniform density p;, lies on the disk, which rotates about
the z axis at angular velocity €2 rad/s. Find H at any point on the z axis.

A filamentary conductor carrying current / in the a, direction extends along
the entire negative z axis. At z = 0 it connects to a copper sheet that fills the
x > 0, y > 0 quadrant of the xy plane. (a) Set up the Biot-Savart law and
find H everywhere on the z axis; (b) repeat part (a), but with the copper sheet
occupying the entire xy plane (Hint: express a, in terms of a, and a, and
angle ¢ in the integral).

For the finite-length current element on the z axis, as shown in Figure 7.5,
use the Biot-Savart law to derive Eq. (9) of Section 7.1.

A current sheet K = 8a, A/m flows in the region —2 < y < 2 in the plane
z = 0. Calculate H at P(0, 0, 3).

7.104 A hollow spherical conducting shell of radius @ has filamentary connections

made at the top (r = a, 6 = 0) and bottom (r = a, 6 = ). A direct current /
flows down the upper filament, down the spherical surface, and out the lower
filament. Find H in spherical coordinates (a) inside and (b) outside the
sphere.

7.11 1 An infinite filament on the z axis carries 207 mA in the a_ direction. Three

a,-directed uniform cylindrical current sheets are also present: 400 mA/m at



