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resistance and capacitance of the structures are related through the simple

formula RC = ε/σ . What basic properties must be true about both the

dielectric and the conducting medium for this condition to hold for certain?

6.17 Construct a curvilinear-square map for a coaxial capacitor of 3 cm inner

radius and 8 cm outer radius. These dimensions are suitable for the drawing.

(a) Use your sketch to calculate the capacitance per meter length, assuming

εr = 1. (b) Calculate an exact value for the capacitance per unit length.

6.18 Construct a curvilinear-square map of the potential field about two

parallel circular cylinders, each of 2.5 cm radius, separated by a center-

to-center distance of 13 cm. These dimensions are suitable for the actual

sketch if symmetry is considered. As a check, compute the capacitance

per meter both from your sketch and from the exact formula. Assume εr = 1.

6.19 Construct a curvilinear-square map of the potential field between two

parallel circular cylinders, one of 4 cm radius inside another of 8 cm radius.

The two axes are displaced by 2.5 cm. These dimensions are suitable for

the drawing. As a check on the accuracy, compute the capacitance per meter

from the sketch and from the exact expression:

C =
2πε

cosh−1 [(a2 + b2 − D2)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

6.20 A solid conducting cylinder of 4 cm radius is centered within a rectangular

conducting cylinder with a 12 cm by 20 cm cross section. (a) Make a full-size

sketch of one quadrant of this configuration and construct a curvilinear-square

map for its interior. (b) Assume ε = ε0 and estimate C per meter length.

6.21 The inner conductor of the transmission line shown in Figure 6.13 has a

square cross section 2a × 2a, whereas the outer square is 4a × 5a. The axes

are displaced as shown. (a) Construct a good-sized drawing of this

transmission line, say with a = 2.5 cm, and then prepare a curvilinear-square

plot of the electrostatic field between the conductors. (b) Use the map to

calculate the capacitance per meter length if ε = 1.6ε0. (c) How would your

result to part (b) change if a = 0.6 cm?

6.22 Two conducting plates, each 3 × 6 cm, and three slabs of dielectric, each

1 × 3 × 6 cm, and having dielectric constants of 1, 2, and 3, are assembled

into a capacitor with d = 3 cm. Determine the two values of capacitance

obtained by the two possible methods of assembling the capacitor.

6.23 A two-wire transmission line consists of two parallel perfectly conducting

cylinders, each having a radius of 0.2 mm, separated by a center-to-center

distance of 2 mm. The medium surrounding the wires has εr = 3 and σ =
1.5 mS/m. A 100-V battery is connected between the wires. (a) Calculate

the magnitude of the charge per meter length on each wire. (b) Using

the result of Problem 6.16, find the battery current.
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Figure 6.13 See Problem 6.21.

6.24 A potential field in free space is given in spherical coordinates as

V (r ) =
{

[ρ0/(6ε0)] [3a2 − r2] (r f a)

(a3ρ0)/(3ε0r ) (r g a)

where ρ0 and a are constants. (a) Use Poisson’s equation to

find the volume charge density everywhere. (b) Find the total charge present.

6.25 Let V = 2xy2z3 and ε = ε0. Given point P(1, 2, −1), find. (a) V at P; (b) E at

P; (c) ρν at P; (d) the equation of the equipotential surface passing

through P; (e) the equation of the streamline passing through P . ( f ) Does V

satisfy Laplace’s equation?

6.26 Given the spherically symmetric potential field in free space, V = V0e−r/a ,

find. (a) ρν at r = a; (b) the electric field at r = a; (c) the total charge.

6.27 Let V (x, y) = 4e2x + f (x) − 3y2 in a region of free space where ρν = 0.

It is known that both Ex and V are zero at the origin. Find f (x) and V (x, y).
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6.28 Show that in a homogeneous medium of conductivity σ , the potential field

V satisfies Laplace’s equation if any volume charge density present does

not vary with time.

6.29 Given the potential field V = (Aρ4 + Bρ−4) sin 4φ: (a) Show that ∇2V = 0.

(b) Select A and B so that V = 100 V and |E| = 500 V/m at P(ρ = 1,

φ = 22.5◦, z = 2).

6.30 A parallel-plate capacitor has plates located at z = 0 and z = d. The region

between plates is filled with a material that contains volume charge of uniform

density ρ0 C/m3 and has permittivity ε. Both plates are held at ground

potential. (a) Determine the potential field between plates. (b) Determine the

electric field intensity E between plates. (c) Repeat parts (a) and (b) for the

case of the plate at z = d raised to potential V0, with the z = 0 plate grounded.

6.31 Let V = (cos 2φ)/ρ in free space. (a) Find the volume charge density at

point A(0.5, 60◦, 1). (b) Find the surface charge density on a conductor

surface passing through the point B(2, 30◦, 1).

6.32 A uniform volume charge has constant density ρν = ρ0 C/m3 and fills the

region r < a, in which permittivity ε is assumed. A conducting spherical

shell is located at r = a and is held at ground potential. Find (a) the

potential everywhere; (b) the electric field intensity, E, everywhere.

6.33 The functions V1(ρ, φ, z) and V2(ρ, φ, z) both satisfy Laplace’s equation

in the region a < ρ < b, 0 f φ < 2π , −L < z < L; each is zero on

the surfaces ρ = b for −L < z < L; z = −L for a < ρ < b; and z = L for

a < ρ < b; and each is 100 V on the surface ρ = a for −L < z < L . (a) In

the region specified, is Laplace’s equation satisfied by the functions V1 + V2,

V1 − V2, V1 + 3, and V1V2? (b) On the boundary surfaces specified, are the

potential values given in this problem obtained from the functions V1 + V2,

V1 − V2, V1 + 3, and V1V2? (c) Are the functions V1 + V2, V1 − V2,

V1 + 3, and V1V2 identical with V1?

6.34 Consider the parallel-plate capacitor of Problem 6.30, but this time the

charged dielectric exists only between z = 0 and z = b, where b < d .

Free space fills the region b < z < d. Both plates are at ground

potential. By solving Laplace’s and Poisson’s equations, find (a) V (z)

for 0 < z < d; (b) the electric field intensity for 0 < z < d .

No surface charge exists at z = b, so both V and D are continuous there.

6.35 The conducting planes 2x + 3y = 12 and 2x + 3y = 18 are at potentials

of 100 V and 0, respectively. Let ε = ε0 and find (a) V at P(5, 2, 6); (b) E

at P.

6.36 The derivation of Laplace’s and Poisson’s equations assumed constant

permittivity, but there are cases of spatially varying permittivity in which the

equations will still apply. Consider the vector identity, ∇ · (ψG) = G · ∇ψ +
ψ∇ · G, where ψ and G are scalar and vector functions, respectively.
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Figure 6.14 See Problem 6.39.

Determine a general rule on the allowed directions in which ε may vary

with respect to the local electric field.

6.37 Coaxial conducting cylinders are located at ρ = 0.5 cm and ρ = 1.2 cm.

The region between the cylinders is filled with a homogeneous perfect

dielectric. If the inner cylinder is at 100 V and the outer at 0 V, find

(a) the location of the 20 V equipotential surface; (b) Eρ max; (c) εr if the

charge per meter length on the inner cylinder is 20 nC/m.

6.38 Repeat Problem 6.37, but with the dielectric only partially filling

the volume, within 0 < φ < π , and with free space in the remaining volume.

6.39 The two conducting planes illustrated in Figure 6.14 are

defined by 0.001 < ρ < 0.120 m, 0 < z < 0.1 m, φ = 0.179 and 0.188 rad.

The medium surrounding the planes is air. For Region 1, 0.179 < φ < 0.188;

neglect fringing and find (a) V (φ); (b) E(ρ); (c) D(ρ); (d) ρs on the upper

surface of the lower plane; (e) Q on the upper surface of the lower plane.

( f ) Repeat parts (a) through (c) for Region 2 by letting the location of

the upper plane be φ = .188 − 2π , and then find ρs and Q on the lower

surface of the lower plane. (g) Find the total charge on the lower plane and

the capacitance between the planes.

6.40 A parallel-plate capacitor is made using two circular plates

of radius a, with the bottom plate on the xy plane, centered at the origin.

The top plate is located at z = d , with its center on the z axis. Potential V0

is on the top plate; the bottom plate is grounded. Dielectric having radially

dependent permittivity fills the region between plates. The permittivity

is given by ε(ρ) = ε0(1 + ρ2/a2). Find (a)V (z); (b) E; (c) Q; (d) C.

This is a reprise of Problem 6.8, but it starts with Laplace’s equation.

6.41 Concentric conducting spheres are located at r = 5 mm and r = 20 mm.

The region between the spheres is filled with a perfect dielectric. If

the inner sphere is at 100 V and the outer sphere is at 0 V (a) Find the
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location of the 20 V equipotential surface. (b) Find Er,max. (c) Find εr if

the surface charge density on the inner sphere is 1.0 µC/m2.

6.42 The hemisphere 0 < r < a, 0 < θ < π/2, is composed of homogeneous

conducting material of conductivity σ . The flat side of the hemisphere

rests on a perfectly conducting plane. Now, the material within the

conical region 0 < θ < α, 0 < r < a is drilled out and replaced with

material that is perfectly conducting. An air gap is maintained between the

r = 0 tip of this new material and the plane. What resistance

is measured between the two perfect conductors? Neglect fringing fields.

6.43 Two coaxial conducting cones have their vertices at the origin and the z axis

as their axis. Cone A has the point A(1, 0, 2) on its surface, while cone B

has the point B(0, 3, 2) on its surface. Let VA = 100 V and VB = 20 V. Find

(a) α for each cone; (b) V at P(1, 1, 1).

6.44 A potential field in free space is given as V = 100 ln tan(θ/2) + 50 V.

(a) Find the maximum value of |Eθ | on the surface θ = 40◦

for 0.1 < r < 0.8 m, 60◦ < φ < 90◦. (b) Describe the surface V = 80 V.

6.45 In free space, let ρν = 200ε0/r2.4. (a) Use Poisson’s equation to

find V (r ) if it is assumed that r2 Er → 0 when r → 0, and also that V → 0

as r → ∞. (b) Now find V (r ) by using Gauss’s law and a line integral.

6.46 By appropriate solution of Laplace’s and Poisson’s equations, determine

the absolute potential at the center of a sphere of radius a, containing

uniform volume charge of density ρ0. Assume permittivity ε0 everywhere.

Hint: What must be true about the potential and the electric

field at r = 0 and at r = a?
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The Steady Magnetic Field

A
t this point, the concept of a field should be a familiar one. Since we first

accepted the experimental law of forces existing between two point charges

and defined electric field intensity as the force per unit charge on a test charge

in the presence of a second charge, we have discussed numerous fields. These fields

possess no real physical basis, for physical measurements must always be in terms

of the forces on the charges in the detection equipment. Those charges that are the

source cause measurable forces to be exerted on other charges, which we may think

of as detector charges. The fact that we attribute a field to the source charges and then

determine the effect of this field on the detector charges amounts merely to a division

of the basic problem into two parts for convenience.

We will begin our study of the magnetic field with a definition of the magnetic

field itself and show how it arises from a current distribution. The effect of this field

on other currents, or the second half of the physical problem, will be discussed in

Chapter 8. As we did with the electric field, we confine our initial discussion to free-

space conditions, and the effect of material media will also be saved for discussion

in Chapter 8.

The relation of the steady magnetic field to its source is more complicated than

is the relation of the electrostatic field to its source. We will find it necessary to

accept several laws temporarily on faith alone. The proof of the laws does exist and

is available on the Web site for the disbelievers or the more advanced student. ■

7.1 BIOT-SAVART LAW

The source of the steady magnetic field may be a permanent magnet, an electric field

changing linearly with time, or a direct current. We will largely ignore the permanent

magnet and save the time-varying electric field for a later discussion. Our present study

will concern the magnetic field produced by a differential dc element in free space.

We may think of this differential current element as a vanishingly small section of

a current-carrying filamentary conductor, where a filamentary conductor is the limiting

180
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Figure 7.1 The law of Biot-Savart

expresses the magnetic field intensity dH2

produced by a differential current element

I 1dL1. The direction of dH2 is into the

page.

case of a cylindrical conductor of circular cross section as the radius approaches zero.

We assume a current I flowing in a differential vector length of the filament dL. The

law of Biot-Savart1 then states that at any point P the magnitude of the magnetic

field intensity produced by the differential element is proportional to the product of

the current, the magnitude of the differential length, and the sine of the angle lying

between the filament and a line connecting the filament to the point P at which

the field is desired; also, the magnitude of the magnetic field intensity is inversely

proportional to the square of the distance from the differential element to the point P.

The direction of the magnetic field intensity is normal to the plane containing the

differential filament and the line drawn from the filament to the point P . Of the two

possible normals, that one to be chosen is the one which is in the direction of progress

of a right-handed screw turned from dL through the smaller angle to the line from the

filament to P. Using rationalized mks units, the constant of proportionality is 1/4π .

The Biot-Savart law, just described in some 150 words, may be written concisely

using vector notation as

dH =
I dL × aR

4πR2
=

I dL × R

4πR3
(1)

The units of the magnetic field intensity H are evidently amperes per meter (A/m).

The geometry is illustrated in Figure 7.1. Subscripts may be used to indicate the point

to which each of the quantities in (1) refers. If we locate the current element at point 1

and describe the point P at which the field is to be determined as point 2, then

dH2 =
I1dL1 × aR12

4πR2
12

(2)

1 Biot and Savart were colleagues of Ampère, and all three were professors of physics at the Collège de

France at one time or another. The Biot-Savart law was proposed in 1820.
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The law of Biot-Savart is sometimes called Ampère’s law for the current element,

but we will retain the former name because of possible confusion with Ampère’s

circuital law, to be discussed later.

In some aspects, the Biot-Savart law is reminiscent of Coulomb’s law when that

law is written for a differential element of charge,

dE2 =
dQ1aR12

4πε0 R2
12

Both show an inverse-square-law dependence on distance, and both show a linear

relationship between source and field. The chief difference appears in the direction

of the field.

It is impossible to check experimentally the law of Biot-Savart as expressed by (1)

or (2) because the differential current element cannot be isolated. We have restricted

our attention to direct currents only, so the charge density is not a function of time.

The continuity equation in Section 5.2, Eq. (5),

∇ · J = −
∂ρν

∂t

therefore shows that

∇ · J = 0

or upon applying the divergence theorem,
∮

s

J · dS = 0

The total current crossing any closed surface is zero, and this condition may be satisfied

only by assuming a current flow around a closed path. It is this current flowing in a

closed circuit that must be our experimental source, not the differential element.

It follows that only the integral form of the Biot-Savart law can be verified

experimentally,

H =
∮

I dL × aR

4πR2
(3)

Equation (1) or (2), of course, leads directly to the integral form (3), but other

differential expressions also yield the same integral formulation. Any term may be

added to (1) whose integral around a closed path is zero. That is, any conservative field

could be added to (1). The gradient of any scalar field always yields a conservative

field, and we could therefore add a term ∇G to (1), where G is a general scalar field,

without changing (3) in the slightest. This qualification on (1) or (2) is mentioned

to show that if we later ask some foolish questions, not subject to any experimental

check, concerning the force exerted by one differential current element on another,

we should expect foolish answers.

The Biot-Savart law may also be expressed in terms of distributed sources, such

as current density J and surface current density K. Surface current flows in a sheet of

vanishingly small thickness, and the current density J, measured in amperes per square
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Figure 7.2 The total current I within a

transverse width b, in which there is a uniform

surface current density K, is K b.

meter, is therefore infinite. Surface current density, however, is measured in amperes

per meter width and designated by K. If the surface current density is uniform, the

total current I in any width b is

I = K b

where we assume that the width b is measured perpendicularly to the direction in which

the current is flowing. The geometry is illustrated by Figure 7.2. For a nonuniform

surface current density, integration is necessary:

I =
∫

KdN (4)

where dN is a differential element of the path across which the current is flowing.

Thus the differential current element I dL, where dL is in the direction of the current,

may be expressed in terms of surface current density K or current density J,

I dL = K d S = J dν (5)

and alternate forms of the Biot-Savart law obtained,

H =
∫

s

K × aRd S

4πR2
(6)

and

H =
∫

vol

J × aRdν

4πR2
(7)
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Figure 7.3 An infinitely long straight filament

carrying a direct current I. The field at point 2 is

H = ( I/2πρ)aφ .

We illustrate the application of the Biot-Savart law by considering an infinitely

long straight filament. We apply (2) first and then integrate. This, of course, is the

same as using the integral form (3) in the first place.2

Referring to Figure 7.3, we should recognize the symmetry of this field. No

variation with z or with φ can exist. Point 2, at which we will determine the field,

is therefore chosen in the z = 0 plane. The field point r is therefore r = ρaρ . The

source point r ′ is given by r′ = z′az , and therefore

R12 = r − r
′ = ρaρ − z′

az

so that

aR12 =
ρaρ − z′az
√

ρ2 + z′2

We take dL = dz′az and (2) becomes

dH2 =
I dz′az × (ρaρ − z′az)

4π (ρ2 + z′2)3/2

Because the current is directed toward increasing values of z′, the limits are −∞ and

∞ on the integral, and we have

H2 =
∫ ∞

−∞

I dz′az × (ρaρ − z′az)

4π (ρ2 + z′2)3/2

=
I

4π

∫ ∞

−∞

ρdz′aφ

(ρ2 + z′2)3/2

2 The closed path for the current may be considered to include a return filament parallel to the first

filament and infinitely far removed. An outer coaxial conductor of infinite radius is another theoretical

possibility. Practically, the problem is an impossible one, but we should realize that our answer will be

quite accurate near a very long, straight wire having a distant return path for the current.
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Figure 7.4 The streamlines of the

magnetic field intensity about an

infinitely long straight filament

carrying a direct current I. The

direction of I is into the page.

At this point the unit vector aφ under the integral sign should be investigated, for it is

not always a constant, as are the unit vectors of the rectangular coordinate system. A

vector is constant when its magnitude and direction are both constant. The unit vector

certainly has constant magnitude, but its direction may change. Here aφ changes with

the coordinate φ but not with ρ or z. Fortunately, the integration here is with respect

to z′, and aφ is a constant and may be removed from under the integral sign,

H2 =
Iρaφ

4π

∫ ∞

−∞

dz′

(ρ2 + z′ 2)3/2

=
Iρaφ

4π

z′

ρ2
√

ρ2 + z′ 2

∣

∣

∣

∣

∣

∞

−∞

and

H2 =
I

2πρ
aφ (8)

The magnitude of the field is not a function of φ or z, and it varies inversely with

the distance from the filament. The direction of the magnetic-field-intensity vector is

circumferential. The streamlines are therefore circles about the filament, and the field

may be mapped in cross section as in Figure 7.4.

The separation of the streamlines is proportional to the radius, or inversely pro-

portional to the magnitude of H. To be specific, the streamlines have been drawn with

curvilinear squares in mind. As yet, we have no name for the family of lines3 that

are perpendicular to these circular streamlines, but the spacing of the streamlines has

3 If you can’t wait, see Section 7.6.
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been adjusted so that the addition of this second set of lines will produce an array of

curvilinear squares.

A comparison of Figure 7.4 with the map of the electric field about an infinite

line charge shows that the streamlines of the magnetic field correspond exactly to

the equipotentials of the electric field, and the unnamed (and undrawn) perpendicular

family of lines in the magnetic field corresponds to the streamlines of the electric

field. This correspondence is not an accident, but there are several other concepts

which must be mastered before the analogy between electric and magnetic fields can

be explored more thoroughly.

Using the Biot-Savart law to find H is in many respects similar to the use of

Coulomb’s law to find E. Each requires the determination of a moderately complicated

integrand containing vector quantities, followed by an integration. When we were

concerned with Coulomb’s law we solved a number of examples, including the fields

of the point charge, line charge, and sheet of charge. The law of Biot-Savart can be

used to solve analogous problems in magnetic fields, and some of these problems

appear as exercises at the end of the chapter rather than as examples here.

One useful result is the field of the finite-length current element, shown in

Figure 7.5. It turns out (see Problem 7.8 at the end of the chapter) that H is most

easily expressed in terms of the angles α1 and α2, as identified in the figure. The

result is

H =
I

4πρ
(sin α2 − sin α1)aφ (9)

If one or both ends are below point 2, then α1 is or both α1 and α2 are negative.

Figure 7.5 The magnetic field intensity

caused by a finite-length current filament

on the z axis is ( I/4πρ)(sin α2 − sin α1)aφ .
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Equation (9) may be used to find the magnetic field intensity caused by current

filaments arranged as a sequence of straight-line segments.

EXAMPLE 7.1

As a numerical example illustrating the use of (9), we determine H at P2(0.4, 0.3, 0)

in the field of an 8. A filamentary current is directed inward from infinity to the origin

on the positive x axis, and then outward to infinity along the y axis. This arrangement

is shown in Figure 7.6.

Solution. We first consider the semi-infinite current on the x axis, identifying the

two angles, α1x = −90◦ and α2x = tan−1(0.4/0.3) = 53.1◦. The radial distance ρ is

measured from the x axis, and we have ρx = 0.3. Thus, this contribution to H2 is

H2(x) =
8

4π (0.3)
(sin 53.1◦ + 1)aφ =

2

0.3π
(1.8)aφ =

12

π
aφ

The unit vector aφ must also be referred to the x axis. We see that it becomes −az .

Therefore,

H2(x) = −
12

π
az A/m

For the current on the y axis, we have α1y = − tan−1(0.3/0.4) = −36.9◦, α2y = 90◦,

and ρy = 0.4. It follows that

H2(y) =
8

4π (0.4)
(1 + sin 36.9◦)(−az) = −

8

π
az A/m

Figure 7.6 The individual fields of two semi-infinite

current segments are found by (9) and added to obtain

H2 at P2.
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Adding these results, we have

H2 = H2(x) + H2(y) = −
20

π
az = −6.37az A/m

D7.1. Given the following values for P1, P2, and I1�L1, calculate �H2:

(a) P1(0, 0, 2), P2(4, 2, 0), 2πazµA·m; (b) P1(0, 2, 0), P2(4, 2, 3), 2πazµA·m;

(c) P1(1, 2, 3), P2(−3, −1, 2), 2π (−ax + ay + 2az)µA·m.

Ans. −8.51ax + 17.01ay nA/m; 16ay nA/m; 18.9ax − 33.9ay + 26.4az nA/m

D7.2. A current filament carrying 15 A in the az direction lies along the entire

z axis. Find H in rectangular coordinates at: (a) PA(
√

20, 0, 4); (b) PB(2, −4, 4).

Ans. 0.534ay A/m; 0.477ax + 0.239ay A/m

7.2 AMPÈRE’S CIRCUITAL LAW

After solving a number of simple electrostatic problems with Coulomb’s law, we

found that the same problems could be solved much more easily by using Gauss’s

law whenever a high degree of symmetry was present. Again, an analogous procedure

exists in magnetic fields. Here, the law that helps us solve problems more easily is

known as Ampère’s circuital4 law, sometimes called Ampère’s work law. This law

may be derived from the Biot-Savart law (see Section 7.7).

Ampère’s circuital law states that the line integral of H about any closed path is

exactly equal to the direct current enclosed by that path,

∮

H · dL = I (10)

We define positive current as flowing in the direction of advance of a right-handed

screw turned in the direction in which the closed path is traversed.

Referring to Figure 7.7, which shows a circular wire carrying a direct current I,

the line integral of H about the closed paths lettered a and b results in an answer of

I; the integral about the closed path c which passes through the conductor gives an

answer less than I and is exactly that portion of the total current that is enclosed by

the path c. Although paths a and b give the same answer, the integrands are, of course,

different. The line integral directs us to multiply the component of H in the direction

of the path by a small increment of path length at one point of the path, move along

the path to the next incremental length, and repeat the process, continuing until the

path is completely traversed. Because H will generally vary from point to point, and

because paths a and b are not alike, the contributions to the integral made by, say,

4 The preferred pronunciation puts the accent on “circ-.”
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Figure 7.7 A conductor has a total current I. The line

integral of H about the closed paths a and b is equal to

I, and the integral around path c is less than I, since the

entire current is not enclosed by the path.

each micrometer of path length are quite different. Only the final answers are the

same.

We should also consider exactly what is meant by the expression “current en-

closed by the path.” Suppose we solder a circuit together after passing the conductor

once through a rubber band, which we use to represent the closed path. Some strange

and formidable paths can be constructed by twisting and knotting the rubber band, but

if neither the rubber band nor the conducting circuit is broken, the current enclosed

by the path is that carried by the conductor. Now replace the rubber band by a circular

ring of spring steel across which is stretched a rubber sheet. The steel loop forms

the closed path, and the current-carrying conductor must pierce the rubber sheet if

the current is to be enclosed by the path. Again, we may twist the steel loop, and

we may also deform the rubber sheet by pushing our fist into it or folding it in any

way we wish. A single current-carrying conductor still pierces the sheet once, and

this is the true measure of the current enclosed by the path. If we should thread the

conductor once through the sheet from front to back and once from back to front, the

total current enclosed by the path is the algebraic sum, which is zero.

In more general language, given a closed path, we recognize this path as the

perimeter of an infinite number of surfaces (not closed surfaces). Any current-carrying

conductor enclosed by the path must pass through every one of these surfaces once.

Certainly some of the surfaces may be chosen in such a way that the conductor pierces

them twice in one direction and once in the other direction, but the algebraic total

current is still the same.

We will find that the nature of the closed path is usually extremely simple and can

be drawn on a plane. The simplest surface is, then, that portion of the plane enclosed

by the path. We need merely find the total current passing through this region of the

plane.

The application of Gauss’s law involves finding the total charge enclosed by a

closed surface; the application of Ampère’s circuital law involves finding the total

current enclosed by a closed path.
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Let us again find the magnetic field intensity produced by an infinitely long

filament carrying a current I . The filament lies on the z axis in free space (as in

Figure 7.3), and the current flows in the direction given by az . Symmetry inspection

comes first, showing that there is no variation with z or φ. Next we determine which

components of H are present by using the Biot-Savart law. Without specifically using

the cross product, we may say that the direction of dH is perpendicular to the plane

conaining dL and R and therefore is in the direction of aφ . Hence the only component

of H is Hφ , and it is a function only of ρ.

We therefore choose a path, to any section of which H is either perpendicular

or tangential, and along which H is constant. The first requirement (perpendicularity

or tangency) allows us to replace the dot product of Ampère’s circuital law with the

product of the scalar magnitudes, except along that portion of the path where H is

normal to the path and the dot product is zero; the second requirement (constancy)

then permits us to remove the magnetic field intensity from the integral sign. The

integration required is usually trivial and consists of finding the length of that portion

of the path to which H is parallel.

In our example, the path must be a circle of radius ρ, and Ampère’s circuital law

becomes

∮

H · dL =
∫ 2π

0

Hφρdφ = Hφρ

∫ 2π

0

dφ = Hφ2πρ = I

or

Hφ =
I

2πρ

as before.

As a second example of the application of Ampère’s circuital law, consider an

infinitely long coaxial transmission line carrying a uniformly distributed total current

I in the center conductor and −I in the outer conductor. The line is shown in Fig-

ure 7.8a. Symmetry shows that H is not a function of φ or z. In order to determine the

components present, we may use the results of the previous example by considering

the solid conductors as being composed of a large number of filaments. No filament

has a z component of H. Furthermore, the Hρ component at φ = 0◦, produced by one

filament located at ρ = ρ1, φ = φ1, is canceled by the Hρ component produced by a

symmetrically located filament at ρ = ρ1, φ = −φ1. This symmetry is illustrated by

Figure 7.8b. Again we find only an Hφ component which varies with ρ.

A circular path of radius ρ, where ρ is larger than the radius of the inner conduc-

tor but less than the inner radius of the outer conductor, then leads immediately to

Hφ =
I

2πρ
(a < ρ < b)
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Figure 7.8 (a) Cross section of a coaxial cable carrying a uniformly

distributed current I in the inner conductor and − I in the outer conductor. The

magnetic field at any point is most easily determined by applying Ampère’s

circuital law about a circular path. (b) Current filaments at ρ = ρ1, φ = ±φ1,

produces Hρ components which cancel. For the total field, H = Hφaφ .

If we choose ρ smaller than the radius of the inner conductor, the current

enclosed is

Iencl = I
ρ2

a2

and

2πρHφ = I
ρ2

a2

or

Hφ =
Iρ

2πa2
(ρ < a)

If the radius ρ is larger than the outer radius of the outer conductor, no current is

enclosed and

Hφ = 0 (ρ > c)

Finally, if the path lies within the outer conductor, we have

2πρHφ = I − I

(

ρ2 − b2

c2 − b2

)

Hφ =
I

2πρ

c2 − ρ2

c2 − b2
(b < ρ < c)

The magnetic-field-strength variation with radius is shown in Figure 7.9 for

a coaxial cable in which b = 3a, c = 4a. It should be noted that the magnetic

field intensity H is continuous at all the conductor boundaries. In other words, a

slight increase in the radius of the closed path does not result in the enclosure of a

tremendously different current. The value of Hφ shows no sudden jumps.
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Figure 7.9 The magnetic field intensity as a function of

radius in an infinitely long coaxial transmission line with

the dimensions shown.

The external field is zero. This, we see, results from equal positive and negative

currents enclosed by the path. Each produces an external field of magnitude I/2πρ,

but complete cancellation occurs. This is another example of “shielding”; such a

coaxial cable carrying large currents would, in principle, not produce any noticeable

effect in an adjacent circuit.

As a final example, let us consider a sheet of current flowing in the positive y

direction and located in the z = 0 plane. We may think of the return current as equally

divided between two distant sheets on either side of the sheet we are considering. A

sheet of uniform surface current density K = K yay is shown in Figure 7.10. H cannot

vary with x or y. If the sheet is subdivided into a number of filaments, it is evident

that no filament can produce an Hy component. Moreover, the Biot-Savart law shows

that the contributions to Hz produced by a symmetrically located pair of filaments

cancel. Thus, Hz is zero also; only an Hx component is present. We therefore choose

the path 1-1′-2′-2-1 composed of straight-line segments that are either parallel or

Figure 7.10 A uniform sheet of surface current

K = K yay in the z = 0 plane. H may be found by applying

Ampère’s circuital law about the paths 1-1′-2′-2-1 and

3-3′-2′-2-3.
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perpendicular to Hx . Ampère’s circuital law gives

Hx1L + Hx2(−L) = K y L

or

Hx1 − Hx2 = K y

If the path 3-3′-2′-2-3 is now chosen, the same current is enclosed, and

Hx3 − Hx2 = K y

and therefore

Hx3 = Hx1

It follows that Hx is the same for all positive z. Similarly, Hx is the same for all

negative z. Because of the symmetry, then, the magnetic field intensity on one side

of the current sheet is the negative of that on the other. Above the sheet,

Hx = 1
2

K y (z > 0)

while below it

Hx = − 1
2

K y (z < 0)

Letting aN be a unit vector normal (outward) to the current sheet, the result may be

written in a form correct for all z as

H = 1
2
K × aN (11)

If a second sheet of current flowing in the opposite direction, K = −K yay , is

placed at z = h, (11) shows that the field in the region between the current sheets is

H = K × aN (0 < z < h) (12)

and is zero elsewhere,

H = 0 (z < 0, z > h) (13)

The most difficult part of the application of Ampère’s circuital law is the deter-

mination of the components of the field that are present. The surest method is the

logical application of the Biot-Savart law and a knowledge of the magnetic fields of

simple form.

Problem 7.13 at the end of this chapter outlines the steps involved in applying

Ampère’s circuital law to an infinitely long solenoid of radius a and uniform current

density Kaaφ, as shown in Figure 7.11a. For reference, the result is

H = Kaaz (ρ < a) (14a)

H = 0 (ρ > a) (14b)
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Figure 7.11 (a) An ideal solenoid of infinite length with a circular

current sheet K = Kaaφ . (b) An N-turn solenoid of finite length d.

If the solenoid has a finite length d and consists of N closely wound turns of a

filament that carries a current I (Figure 7.11b), then the field at points well within the

solenoid is given closely by

H =
N I

d
az (well within the solenoid) (15)

The approximation is useful it if is not applied closer than two radii to the open ends,

nor closer to the solenoid surface than twice the separation between turns.

For the toroids shown in Figure 7.12, it can be shown that the magnetic field

intensity for the ideal case, Figure 7.12a, is

H = Ka

ρ0 − a

ρ
aφ (inside toroid) (16a)

H = 0 (outside) (16b)

For the N -turn toroid of Figure 7.12b, we have the good approximations,

H =
NI

2πρ
aφ (inside toroid) (17a)

H = 0 (outside) (17b)

as long as we consider points removed from the toroidal surface by several times the

separation between turns.

Toroids having rectangular cross sections are also treated quite readily, as you

can see for yourself by trying Problem 7.14.

Accurate formulas for solenoids, toroids, and coils of other shapes are available

in Section 2 of the Standard Handbook for Electrical Engineers (see References for

Chapter 5).
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Figure 7.12 (a) An ideal toroid carrying a surface current K in the

direction shown. (b) An N-turn toroid carrying a filamentary current I.

D7.3. Express the value of H in rectangular components at P(0, 0.2, 0) in the

field of: (a) a current filament, 2.5 A in the az direction at x = 0.1, y = 0.3;

(b) a coax, centered on the z axis, with a = 0.3, b = 0.5, c = 0.6, I = 2.5 A

in the az direction in the center conductor; (c) three current sheets, 2.7ax A/m

at y = 0.1, −1.4ax A/m at y = 0.15, and −1.3ax A/m at y = 0.25.

Ans. 1.989ax − 1.989ay A/m; −0.884ax A/m; 1.300az A/m

7.3 CURL

We completed our study of Gauss’s law by applying it to a differential volume element

and were led to the concept of divergence. We now apply Ampère’s circuital law to

the perimeter of a differential surface element and discuss the third and last of the

special derivatives of vector analysis, the curl. Our objective is to obtain the point

form of Ampère’s circuital law.

Again we choose rectangular coordinates, and an incremental closed path of sides

�x and �y is selected (Figure 7.13). We assume that some current, as yet unspecified,

produces a reference value for H at the center of this small rectangle,

H0 = Hx0ax + Hy0ay + Hz0az

The closed line integral of H about this path is then approximately the sum of the four

values of H · �L on each side. We choose the direction of traverse as 1-2-3-4-1, which

corresponds to a current in the az direction, and the first contribution is therefore

(H · �L)1−2 = Hy,1−2�y

The value of Hy on this section of the path may be given in terms of the reference

value Hy0 at the center of the rectangle, the rate of change of Hy with x, and the
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Figure 7.13 An incremental closed path in

rectangular coordinates is selected for the

application of Ampère’s circuital law to determine

the spatial rate of change of H.

distance �x/2 from the center to the midpoint of side 1–2:

Hy,1−2
.= Hy0 +

∂ Hy

∂x

(

1

2
�x

)

Thus

(H · �L)1−2
.=

(

Hy0 +
1

2

∂ Hy

∂x
�x

)

�y

Along the next section of the path we have

(H · �L)2−3
.= Hx,2−3(−�x)

.= −
(

Hx0 +
1

2

∂ Hx

∂y
�y

)

�x

Continuing for the remaining two segments and adding the results,
∮

H · dL
.=

(

∂ Hy

∂x
−

∂ Hx

∂y

)

�x�y

By Ampère’s circuital law, this result must be equal to the current enclosed by the

path, or the current crossing any surface bounded by the path. If we assume a general

current density J, the enclosed current is then �I
.= Jz�x�y, and

∮

H · dL
.=

(

∂ Hy

∂x
−

∂ Hx

∂y

)

�x�y
.= Jz�x�y

or
∮

H · dL

�x�y

.=
∂ Hy

∂x
−

∂ Hx

∂y

.= Jz

As we cause the closed path to shrink, the preceding expression becomes more nearly

exact, and in the limit we have the equality

lim
�x,�y→0

∮

H · dL

�x�y
=

∂ Hy

∂x
−

∂ Hx

∂y
= Jz (18)
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After beginning with Ampère’s circuital law equating the closed line integral of

H to the current enclosed, we have now arrived at a relationship involving the closed

line integral of H per unit area enclosed and the current per unit area enclosed, or

current density. We performed a similar analysis in passing from the integral form of

Gauss’s law, involving flux through a closed surface and charge enclosed, to the point

form, relating flux through a closed surface per unit volume enclosed and charge per

unit volume enclosed, or volume charge density. In each case a limit is necessary to

produce an equality.

If we choose closed paths that are oriented perpendicularly to each of the re-

maining two coordinate axes, analogous processes lead to expressions for the x and

y components of the current density,

lim
�y,�z→0

∮

H · dL

�y�z
=

∂ Hz

∂y
−

∂ Hy

∂z
= Jx (19)

and

lim
�z,�x→0

∮

H · dL

�z�x
=

∂ Hx

∂z
−

∂ Hz

∂x
= Jy (20)

Comparing (18)–(20), we see that a component of the current density is given by

the limit of the quotient of the closed line integral of H about a small path in a plane

normal to that component and of the area enclosed as the path shrinks to zero. This

limit has its counterpart in other fields of science and long ago received the name of

curl. The curl of any vector is a vector, and any component of the curl is given by

the limit of the quotient of the closed line integral of the vector about a small path in

a plane normal to that component desired and the area enclosed, as the path shrinks

to zero. It should be noted that this definition of curl does not refer specifically to a

particular coordinate system. The mathematical form of the definition is

(curl H)N = lim
�SN →0

∮

H · dL

�SN

(21)

where �SN is the planar area enclosed by the closed line integral. The N subscript

indicates that the component of the curl is that component which is normal to the

surface enclosed by the closed path. It may represent any component in any coordinate

system.

In rectangular coordinates, the definition (21) shows that the x , y, and z compo-

nents of the curl H are given by (18)–(20), and therefore

curl H =
(

∂ Hz

∂y
−

∂ Hy

∂z

)

ax +
(

∂ Hx

∂z
−

∂ Hz

∂x

)

ay +
(

∂ Hy

∂x
−

∂ Hx

∂y

)

az (22)



198 ENGINEERING ELECTROMAGNETICS

This result may be written in the form of a determinant,

curl H =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az

∂

∂x

∂

∂y

∂

∂z

Hx Hy Hz

∣

∣

∣

∣

∣

∣

∣

∣

∣

(23)

and may also be written in terms of the vector operator,

curl H = ∇ × H (24)

Equation (22) is the result of applying the definition (21) to the rectangular coordi-

nate system. We obtained the z component of this expression by evaluating Ampère’s

circuital law about an incremental path of sides �x and �y, and we could have ob-

tained the other two components just as easily by choosing the appropriate paths. Equa-

tion (23) is a neat method of storing the rectangular coordinate expression for curl; the

form is symmetrical and easily remembered. Equation (24) is even more concise and

leads to (22) upon applying the definitions of the cross product and vector operator.

The expressions for curl H in cylindrical and spherical coordinates are derived in

Appendix A by applying the definition (21). Although they may be written in determi-

nant form, as explained there, the determinants do not have one row of unit vectors on

top and one row of components on the bottom, and they are not easily memorized. For

this reason, the curl expansions in cylindrical and spherical coordinates that follow

here and appear inside the back cover are usually referred to whenever necessary.

∇ × H =
(

1

ρ

∂Hz

∂φ
−

∂Hφ

∂z

)

aρ +
(

∂Hρ

∂z
−

∂Hz

∂ρ

)

aφ

+
(

1

ρ

∂(ρHφ)

∂ρ
−

1

ρ

∂Hρ

∂φ

)

az (cylindrical)

(25)

∇ × H =
1

r sin θ

(

∂(Hφ sin θ )

∂θ
−

∂Hθ

∂φ

)

ar +
1

r

(

1

sin θ

∂Hr

∂φ
−

∂(rHφ)

∂r

)

aθ

+
1

r

(

∂(rHθ )

∂r
−

∂Hr

∂θ

)

aφ (spherical)

(26)

Although we have described curl as a line integral per unit area, this does not

provide everyone with a satisfactory physical picture of the nature of the curl operation,

for the closed line integral itself requires physical interpretation. This integral was

first met in the electrostatic field, where we saw that
∮

E · dL = 0. Inasmuch as the

integral was zero, we did not belabor the physical picture. More recently we have

discussed the closed line integral of H,
∮

H · dL = I . Either of these closed line

integrals is also known by the name of circulation, a term borrowed from the field of

fluid dynamics.
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Figure 7.14 (a) The curl meter shows a component of the curl of the water velocity

into the page. (b) The curl of the magnetic field intensity about an infinitely long filament

is shown.

The circulation of H, or
∮

H · dL, is obtained by multiplying the component

of H parallel to the specified closed path at each point along it by the differential

path length and summing the results as the differential lengths approach zero and as

their number becomes infinite. We do not require a vanishingly small path. Ampère’s

circuital law tells us that if H does possess circulation about a given path, then current

passes through this path. In electrostatics we see that the circulation of E is zero about

every path, a direct consequence of the fact that zero work is required to carry a charge

around a closed path.

We may describe curl as circulation per unit area. The closed path is vanishingly

small, and curl is defined at a point. The curl of E must be zero, for the circulation

is zero. The curl of H is not zero, however; the circulation of H per unit area is the

current density by Ampère’s circuital law [or (18), (19), and (20)].

Skilling5 suggests the use of a very small paddle wheel as a “curl meter.” Our

vector quantity, then, must be thought of as capable of applying a force to each blade

of the paddle wheel, the force being proportional to the component of the field normal

to the surface of that blade. To test a field for curl, we dip our paddle wheel into the

field, with the axis of the paddle wheel lined up with the direction of the component of

curl desired, and note the action of the field on the paddle. No rotation means no curl;

larger angular velocities mean greater values of the curl; a reversal in the direction of

spin means a reversal in the sign of the curl. To find the direction of the vector curl and

not merely to establish the presence of any particular component, we should place

our paddle wheel in the field and hunt around for the orientation which produces the

greatest torque. The direction of the curl is then along the axis of the paddle wheel,

as given by the right-hand rule.

As an example, consider the flow of water in a river. Figure 7.14a shows the

longitudinal section of a wide river taken at the middle of the river. The water velocity

is zero at the bottom and increases linearly as the surface is approached. A paddle

wheel placed in the position shown, with its axis perpendicular to the paper, will turn

in a clockwise direction, showing the presence of a component of curl in the direction

5 See the References at the end of the chapter.


