CHAPTER 6 Capacitance

resistance and capacitance of the structures are related through the simple
formula RC = €/o. What basic properties must be true about both the
dielectric and the conducting medium for this condition to hold for certain?

6.17 | Construct a curvilinear-square map for a coaxial capacitor of 3 cm inner
radius and 8 cm outer radius. These dimensions are suitable for the drawing.
(a) Use your sketch to calculate the capacitance per meter length, assuming
€, = 1. (b) Calculate an exact value for the capacitance per unit length.

6.18  Construct a curvilinear-square map of the potential field about two
parallel circular cylinders, each of 2.5 cm radius, separated by a center-
to-center distance of 13 cm. These dimensions are suitable for the actual
sketch if symmetry is considered. As a check, compute the capacitance
per meter both from your sketch and from the exact formula. Assume €, = 1.

6.19§ Construct a curvilinear-square map of the potential field between two
parallel circular cylinders, one of 4 cm radius inside another of 8 cm radius.
The two axes are displaced by 2.5 cm. These dimensions are suitable for
the drawing. As a check on the accuracy, compute the capacitance per meter
from the sketch and from the exact expression:

2me

~ cosh™! [(a? + b2 — D?)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

6.20 | A solid conducting cylinder of 4 cm radius is centered within a rectangular
conducting cylinder with a 12 cm by 20 cm cross section. (a) Make a full-size
sketch of one quadrant of this configuration and construct a curvilinear-square
map for its interior. (b) Assume € = € and estimate C per meter length.

6.21 | The inner conductor of the transmission line shown in Figure 6.13 has a
square cross section 2a x 2a, whereas the outer square is 4a x 5a. The axes
are displaced as shown. (a) Construct a good-sized drawing of this
transmission line, say with a = 2.5 cm, and then prepare a curvilinear-square
plot of the electrostatic field between the conductors. (b) Use the map to
calculate the capacitance per meter length if € = 1.6¢y. (¢) How would your
result to part (b) change if a = 0.6 cm?

6.221 Two conducting plates, each 3 x 6 cm, and three slabs of dielectric, each
1 x 3 x 6 cm, and having dielectric constants of 1, 2, and 3, are assembled
into a capacitor with d = 3 cm. Determine the two values of capacitance
obtained by the two possible methods of assembling the capacitor.

6.23§ A two-wire transmission line consists of two parallel perfectly conducting
cylinders, each having a radius of 0.2 mm, separated by a center-to-center
distance of 2 mm. The medium surrounding the wires has €, =3 and o0 =
1.5 mS/m. A 100-V battery is connected between the wires. (a) Calculate
the magnitude of the charge per meter length on each wire. (b) Using
the result of Problem 6.16, find the battery current.
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*

Figure 6.13 See Problem 6.21.

6241 A potential field in free space is given in spherical coordinates as

Vi) = { [po/(6€0)] [3a* — r?] (r < a)
(@po)/(Beor) (r = a)
where pg and a are constants. (a) Use Poisson’s equation to
find the volume charge density everywhere. (b) Find the total charge present.

6.250 LetV = 2xy%z3 and € = €. Given point P(1,2, —1), find. (@) V at P; (b) E at
P; (c) py at P; (d) the equation of the equipotential surface passing
through P; (e) the equation of the streamline passing through P. (f) Does V
satisfy Laplace’s equation?

6.26 L Given the spherically symmetric potential field in free space, V = Voe /%,
find. (a) p, at r = a; (b) the electric field at r = a; (c) the total charge.

6.271 Let V(x,y) = 4e** + f(x) — 3y? in a region of free space where p, = 0.
It is known that both E, and V are zero at the origin. Find f(x) and V(x, y).
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6.28 | Show thatin a homogeneous medium of conductivity o, the potential field
V satisfies Laplace’s equation if any volume charge density present does
not vary with time.

6.29 | Given the potential field V = (Ap* 4+ Bp~*)sin4¢: (a) Show that V2V = 0.
(b) Select A and B so that V = 100 V and |[E| = 500 V/m at P(p =1,
¢ =22.5°z=2).

6304 A parallel-plate capacitor has plates located at z = 0 and z = d. The region
between plates is filled with a material that contains volume charge of uniform
density py C/m® and has permittivity €. Both plates are held at ground
potential. (a) Determine the potential field between plates. (b) Determine the
electric field intensity E between plates. (¢) Repeat parts (a) and () for the
case of the plate at z = d raised to potential Vj, with the z = 0 plate grounded.

6310 Let vV = (cos2¢)/p in free space. (a) Find the volume charge density at
point A(0.5, 60°, 1). (b) Find the surface charge density on a conductor
surface passing through the point B(2, 30°, 1).

6.321 A uniform volume charge has constant density p, = po C/m* and fills the
region r < a, in which permittivity € is assumed. A conducting spherical
shell is located at r = a and is held at ground potential. Find (a) the
potential everywhere; (b) the electric field intensity, E, everywhere.

6.33 ! The functions Vi(p, ¢, z) and Va(p, ¢, z) both satisfy Laplace’s equation
intheregiona < p < b,0 < ¢ <2m, —L < 7z < L; each is zero on
the surfaces p = b for —L <z < L; z=—L fora < p < b;and z = L for
a < p < b;and each is 100 V on the surface p = a for —L <z < L. (a) In
the region specified, is Laplace’s equation satisfied by the functions V| + V3,
Vi — V,, Vi + 3, and V;V»? (b) On the boundary surfaces specified, are the
potential values given in this problem obtained from the functions V| + V5,
Vi — Va2, Vi 4+ 3, and V; V,? (¢) Are the functions V| + V,, Vi — V5,
Vi + 3, and V;V; identical with V;?

6.34 ! Consider the parallel-plate capacitor of Problem 6.30, but this time the
charged dielectric exists only between z = 0 and z = b, where b < d.
Free space fills the region b < z < d. Both plates are at ground
potential. By solving Laplace’s and Poisson’s equations, find (a) V(z)
for 0 < z < d; (b) the electric field intensity for 0 < z < d.
No surface charge exists at z = b, so both V and D are continuous there.

6.351 The conducting planes 2x + 3y = 12 and 2x 4 3y = 18 are at potentials
of 100 V and 0, respectively. Let € = € and find (a) V at P(5, 2, 6); (b) E
at P.

6.36 § The derivation of Laplace’s and Poisson’s equations assumed constant
permittivity, but there are cases of spatially varying permittivity in which the
equations will still apply. Consider the vector identity, V - (¥ G) = G-V +
¥V - G, where ¥ and G are scalar and vector functions, respectively.
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Figure 6.14 See Problem 6.39.

Determine a general rule on the allowed directions in which € may vary
with respect to the local electric field.

6.37 1 Coaxial conducting cylinders are located at p = 0.5 cm and p = 1.2 cm.
The region between the cylinders is filled with a homogeneous perfect
dielectric. If the inner cylinder is at 100 V and the outer at 0 V, find
(a) the location of the 20 V equipotential surface; (b) E,max; (¢) €, if the
charge per meter length on the inner cylinder is 20 nC/m.

6.381 Repeat Problem 6.37, but with the dielectric only partially filling
the volume, within 0 < ¢ < m, and with free space in the remaining volume.

6.39 1 The two conducting planes illustrated in Figure 6.14 are
defined by 0.001 < p < 0.120m, 0 < z < 0.1 m, ¢ = 0.179 and 0.188 rad.
The medium surrounding the planes is air. For Region 1, 0.179 < ¢ < 0.188;
neglect fringing and find (a) V(¢); (b) E(p); (c) D(p); (d) ps on the upper
surface of the lower plane; (e) Q on the upper surface of the lower plane.
(f) Repeat parts (a) through (c) for Region 2 by letting the location of
the upper plane be ¢ = .188 — 27, and then find p, and Q on the lower
surface of the lower plane. (g) Find the total charge on the lower plane and
the capacitance between the planes.

6401 A parallel-plate capacitor is made using two circular plates
of radius a, with the bottom plate on the xy plane, centered at the origin.
The top plate is located at z = d, with its center on the z axis. Potential V
is on the top plate; the bottom plate is grounded. Dielectric having radially
dependent permittivity fills the region between plates. The permittivity
is given by €(p) = €o(1 + p*/a?). Find (a)V (z); (b)E; (c) Q: (d) C.
This is a reprise of Problem 6.8, but it starts with Laplace’s equation.

6.411 Concentric conducting spheres are located at » = 5 mm and r = 20 mm.
The region between the spheres is filled with a perfect dielectric. If
the inner sphere is at 100 V and the outer sphere is at 0 V (a) Find the
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location of the 20 V equipotential surface. (b) Find E, jax. (¢) Find €, if
the surface charge density on the inner sphere is 1.0 4C/m?.

6.42 1 The hemisphere 0 < r < a,0 < 6 < m/2, is composed of homogeneous
conducting material of conductivity o. The flat side of the hemisphere
rests on a perfectly conducting plane. Now, the material within the
conical region 0 < § < o, 0 < r < a is drilled out and replaced with
material that is perfectly conducting. An air gap is maintained between the
r = 0 tip of this new material and the plane. What resistance
is measured between the two perfect conductors? Neglect fringing fields.

6.43 1 Two coaxial conducting cones have their vertices at the origin and the z axis
as their axis. Cone A has the point A(1, 0, 2) on its surface, while cone B
has the point B(0, 3, 2) on its surface. Let V4 = 100 V and V = 20 V. Find
(a) a for each cone; (b) V at P(1,1, 1).

6441 A potential field in free space is given as V = 1001ntan(6/2) 4 50 V.
(a) Find the maximum value of |Ey| on the surface 6 = 40°
for 0.1 <r < 0.8 m, 60° < ¢ < 90°. (b) Describe the surface V = 80 V.

6.45 ! In free space, let p, = 200€/r>*. (a) Use Poisson’s equation to
find V(r) if it is assumed that 72E, — 0 when r — 0, and also that V — 0
as r — 00. (b) Now find V(r) by using Gauss’s law and a line integral.

6.461 By appropriate solution of Laplace’s and Poisson’s equations, determine
the absolute potential at the center of a sphere of radius a, containing
uniform volume charge of density py. Assume permittivity €, everywhere.
Hint: What must be true about the potential and the electric
fieldatr =0and atr = a?
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The Steady Magnetic Field

accepted the experimental law of forces existing between two point charges

and defined electric field intensity as the force per unit charge on a test charge
in the presence of a second charge, we have discussed numerous fields. These fields
possess no real physical basis, for physical measurements must always be in terms
of the forces on the charges in the detection equipment. Those charges that are the
source cause measurable forces to be exerted on other charges, which we may think
of as detector charges. The fact that we attribute a field to the source charges and then
determine the effect of this field on the detector charges amounts merely to a division
of the basic problem into two parts for convenience.

We will begin our study of the magnetic field with a definition of the magnetic
field itself and show how it arises from a current distribution. The effect of this field
on other currents, or the second half of the physical problem, will be discussed in
Chapter 8. As we did with the electric field, we confine our initial discussion to free-
space conditions, and the effect of material media will also be saved for discussion
in Chapter 8.

The relation of the steady magnetic field to its source is more complicated than
is the relation of the electrostatic field to its source. We will find it necessary to
accept several laws temporarily on faith alone. The proof of the laws does exist and
is available on the Web site for the disbelievers or the more advanced student. M

A t this point, the concept of a field should be a familiar one. Since we first

7.1 BIOT-SAVART LAW

The source of the steady magnetic field may be a permanent magnet, an electric field
changing linearly with time, or a direct current. We will largely ignore the permanent
magnet and save the time-varying electric field for a later discussion. Our present study
will concern the magnetic field produced by a differential dc element in free space.
We may think of this differential current element as a vanishingly small section of
acurrent-carrying filamentary conductor, where a filamentary conductor is the limiting
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Figure 7.1 The law of Biot-Savart
expresses the magnetic field intensity dH»
produced by a differential current element
/1dL+. The direction of dH> is into the
page.

case of a cylindrical conductor of circular cross section as the radius approaches zero.
We assume a current / flowing in a differential vector length of the filament L. The
law of Biot-Savart! then states that at any point P the magnitude of the magnetic
field intensity produced by the differential element is proportional to the product of
the current, the magnitude of the differential length, and the sine of the angle lying
between the filament and a line connecting the filament to the point P at which
the field is desired; also, the magnitude of the magnetic field intensity is inversely
proportional to the square of the distance from the differential element to the point P.
The direction of the magnetic field intensity is normal to the plane containing the
differential filament and the line drawn from the filament to the point P. Of the two
possible normals, that one to be chosen is the one which is in the direction of progress
of aright-handed screw turned from dL through the smaller angle to the line from the
filament to P. Using rationalized mks units, the constant of proportionality is 1/47.

The Biot-Savart law, just described in some 150 words, may be written concisely
using vector notation as

IdL x ag IdL xR
dH = = (1)
47 R? 47 R3
The units of the magnetic field intensity H are evidently amperes per meter (A/m).
The geometry is illustrated in Figure 7.1. Subscripts may be used to indicate the point
to which each of the quantities in (1) refers. If we locate the current element at point 1

and describe the point P at which the field is to be determined as point 2, then

11dL1 X aAR12

dH, =
: 4an2

(©))

! Biot and Savart were colleagues of Ampére, and all three were professors of physics at the College de
France at one time or another. The Biot-Savart law was proposed in 1820.
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The law of Biot-Savart is sometimes called Ampere’s law for the current element,
but we will retain the former name because of possible confusion with Ampere’s
circuital law, to be discussed later.

In some aspects, the Biot-Savart law is reminiscent of Coulomb’s law when that
law is written for a differential element of charge,

_dQiagp
47T€()R122

Both show an inverse-square-law dependence on distance, and both show a linear
relationship between source and field. The chief difference appears in the direction
of the field.

Itis impossible to check experimentally the law of Biot-Savart as expressed by (1)
or (2) because the differential current element cannot be isolated. We have restricted
our attention to direct currents only, so the charge density is not a function of time.
The continuity equation in Section 5.2, Eq. (5),

dE,;

9py
V.]=—
J ot
therefore shows that
v.-J=0

or upon applying the divergence theorem,

%J-dS:O

The total current crossing any closed surface is zero, and this condition may be satisfied
only by assuming a current flow around a closed path. It is this current flowing in a
closed circuit that must be our experimental source, not the differential element.

It follows that only the integral form of the Biot-Savart law can be verified
experimentally,

47 R?

B f 1dL x ag )

Equation (1) or (2), of course, leads directly to the integral form (3), but other
differential expressions also yield the same integral formulation. Any term may be
added to (1) whose integral around a closed path is zero. That is, any conservative field
could be added to (1). The gradient of any scalar field always yields a conservative
field, and we could therefore add a term VG to (1), where G is a general scalar field,
without changing (3) in the slightest. This qualification on (1) or (2) is mentioned
to show that if we later ask some foolish questions, not subject to any experimental
check, concerning the force exerted by one differential current element on another,
we should expect foolish answers.

The Biot-Savart law may also be expressed in terms of distributed sources, such
as current density J and surface current density K. Surface current flows in a sheet of
vanishingly small thickness, and the current density J, measured in amperes per square
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Figure 7.2 The total current | within a
transverse width b, in which there is a uniform
surface current density K, is Kb.

meter, is therefore infinite. Surface current density, however, is measured in amperes
per meter width and designated by K. If the surface current density is uniform, the
total current / in any width b is

I =Kb

where we assume that the width b is measured perpendicularly to the direction in which
the current is flowing. The geometry is illustrated by Figure 7.2. For a nonuniform
surface current density, integration is necessary:

/= / KdN @)

where dN is a differential element of the path across which the current is flowing.
Thus the differential current element I dLL, where dL is in the direction of the current,
may be expressed in terms of surface current density K or current density J,

I1dL =KdS =Jdv ®)

and alternate forms of the Biot-Savart law obtained,

K x ardS
H= | — 6
/S 4 R? ©)
and
d
H— J x ardv N
vol 47TR2
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(Point 1) ] Free space

’,

z'a,

pa, (Point 2)

l

Figure 7.3 Aninfinitely long straight filament
carrying a direct current /. The field at point 2 is
H=(//2rp)ay.

We illustrate the application of the Biot-Savart law by considering an infinitely
long straight filament. We apply (2) first and then integrate. This, of course, is the
same as using the integral form (3) in the first place.’

Referring to Figure 7.3, we should recognize the symmetry of this field. No
variation with z or with ¢ can exist. Point 2, at which we will determine the field,
is therefore chosen in the z = 0 plane. The field point r is therefore r = pa,. The
source point r’ is given by r’ = z’a,, and therefore

Rip=r—r =pa, —7a,
so that
pa, —7'a;
AR = —F————
/pZ + Z/2
We take dL = dz’a, and (2) becomes
JH, — Id7a; x (pa, — Z'a;)
4 (p2 + 7/2)32
Because the current is directed toward increasing values of z’, the limits are —oo and
oo on the integral, and we have

H, — * Id7'a, x (pa, — 7'a;)
T A +
—0Q

_ LT _pday
ax | o (p2 + 7232

2 The closed path for the current may be considered to include a return filament parallel to the first
filament and infinitely far removed. An outer coaxial conductor of infinite radius is another theoretical
possibility. Practically, the problem is an impossible one, but we should realize that our answer will be
quite accurate near a very long, straight wire having a distant return path for the current.
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Figure 7.4 The streamlines of the
magnetic field intensity about an
infinitely long straight filament
carrying a direct current /. The
direction of / is into the page.

At this point the unit vector ags under the integral sign should be investigated, for it is
not always a constant, as are the unit vectors of the rectangular coordinate system. A
vector is constant when its magnitude and direction are both constant. The unit vector
certainly has constant magnitude, but its direction may change. Here ag changes with
the coordinate ¢ but not with p or z. Fortunately, the integration here is with respect
to 7/, and a, is a constant and may be removed from under the integral sign,

Ipa, [~  d7
H, = pa¢/ z

A7 o (P24 722
_ Ipay 7 -
- 2 /2 2
4 P P + 7/ .
and
1
H2 = %a (8)

The magnitude of the field is not a function of ¢ or z, and it varies inversely with
the distance from the filament. The direction of the magnetic-field-intensity vector is
circumferential. The streamlines are therefore circles about the filament, and the field
may be mapped in cross section as in Figure 7.4.

The separation of the streamlines is proportional to the radius, or inversely pro-
portional to the magnitude of H. To be specific, the streamlines have been drawn with
curvilinear squares in mind. As yet, we have no name for the family of lines® that
are perpendicular to these circular streamlines, but the spacing of the streamlines has

31t you can’t wait, see Section 7.6.

(i)
Mustations
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been adjusted so that the addition of this second set of lines will produce an array of
curvilinear squares.

A comparison of Figure 7.4 with the map of the electric field about an infinite
line charge shows that the streamlines of the magnetic field correspond exactly to
the equipotentials of the electric field, and the unnamed (and undrawn) perpendicular
family of lines in the magnetic field corresponds to the streamlines of the electric
field. This correspondence is not an accident, but there are several other concepts
which must be mastered before the analogy between electric and magnetic fields can
be explored more thoroughly.

Using the Biot-Savart law to find H is in many respects similar to the use of
Coulomb’s law to find E. Each requires the determination of a moderately complicated
integrand containing vector quantities, followed by an integration. When we were
concerned with Coulomb’s law we solved a number of examples, including the fields
of the point charge, line charge, and sheet of charge. The law of Biot-Savart can be
used to solve analogous problems in magnetic fields, and some of these problems
appear as exercises at the end of the chapter rather than as examples here.

One useful result is the field of the finite-length current element, shown in
Figure 7.5. It turns out (see Problem 7.8 at the end of the chapter) that H is most
easily expressed in terms of the angles «; and «y, as identified in the figure. The
result is

1
H= m(sin ap — sinay)ag ©))

If one or both ends are below point 2, then «; is or both «; and o, are negative.

a3
(]
Point 2

Figure 7.5 The magnetic field intensity
caused by a finite-length current filament
on the z axis is (/ /4 p)(Sin o — Sina)ay.



CHAPTER 7 The Steady Magnetic Field 187

Equation (9) may be used to find the magnetic field intensity caused by current
filaments arranged as a sequence of straight-line segments.

As a numerical example illustrating the use of (9), we determine H at P,(0.4, 0.3, 0)
in the field of an 8. A filamentary current is directed inward from infinity to the origin
on the positive x axis, and then outward to infinity along the y axis. This arrangement
is shown in Figure 7.6.

Solution. We first consider the semi-infinite current on the x axis, identifying the
two angles, o), = —90° and o, = tan~"'(0.4/0.3) = 53.1°. The radial distance p is
measured from the x axis, and we have p, = 0.3. Thus, this contribution to Hj is

8 2 12
H x) — ——(si 53.10 1 = — (1.8 = —
20 = g0 B3 Dag = G (1.8)ay = —a,

The unit vector ag must also be referred to the x axis. We see that it becomes —a;.
Therefore,

12
Hz(x) = ——Qa,; A/m
b4
For the current on the y axis, we have o1, = — tan’1(0.3/0.4) = —36.9°, az, = 90°,
and p, = 0.4. It follows that
H 8 (1 +sin36.9°)(—a,) 8a A/m
)= ——— i 9%)(—a,) = ——
07 47(0.4) : P
84

8 A/ ayy,
2)(‘\\?%’

a
[ 2
arl / Py(04,03,0)

X

Figure 7.6 The individual fields of two semi-infinite
current segments are found by (9) and added to obtain
H2 at P.
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Adding these results, we have
20
H2 = H2(x) + H2(y) = —;az = —6.37az A/m
D7.1. Given the following values for P, P,, and I; AL, calculate AH;:
(a) PI(O’ 03 2)9 P2(43 25 O)? znaZMA'm; (b) Pl (07 2’ O)’ P2(47 27 3)7 27TaZMA'm;
(c) Pi(1,2,3), P,(—3,—1,2),27(—a, + a, + 2a,)uA-m.

Ans. —8.5la, + 17.01ay, nA/m; 16a, nA/m; 18.9a, — 33.9a, + 26.4a, nA/m

D7.2. A current filament carrying 15 A in the a, direction lies along the entire
z axis. Find H in rectangular coordinates at: (a) P4(+/20, 0, 4); (b) Pg(2, —4, 4).

Ans. 0.534a, A/m; 0.477a, + 0.239a, A/m

7.2 AMPERE’S CIRCUITAL LAW

After solving a number of simple electrostatic problems with Coulomb’s law, we
found that the same problems could be solved much more easily by using Gauss’s
law whenever a high degree of symmetry was present. Again, an analogous procedure
exists in magnetic fields. Here, the law that helps us solve problems more easily is
known as Ampere’s circuital® law, sometimes called Ampere’s work law. This law
may be derived from the Biot-Savart law (see Section 7.7).

Ampere’s circuital law states that the line integral of H about any closed path is
exactly equal to the direct current enclosed by that path,

?gH-szl (10)

We define positive current as flowing in the direction of advance of a right-handed
screw turned in the direction in which the closed path is traversed.

Referring to Figure 7.7, which shows a circular wire carrying a direct current /,
the line integral of H about the closed paths lettered a and b results in an answer of
I; the integral about the closed path ¢ which passes through the conductor gives an
answer less than / and is exactly that portion of the total current that is enclosed by
the path c. Although paths a and b give the same answer, the integrands are, of course,
different. The line integral directs us to multiply the component of H in the direction
of the path by a small increment of path length at one point of the path, move along
the path to the next incremental length, and repeat the process, continuing until the
path is completely traversed. Because H will generally vary from point to point, and
because paths a and b are not alike, the contributions to the integral made by, say,

4 The preferred pronunciation puts the accent on “circ-.”
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Figure 7.7 A conductor has a total current /. The line
integral of H about the closed paths a and b is equal to

/, and the integral around path c is less than /, since the
entire current is not enclosed by the path.

each micrometer of path length are quite different. Only the final answers are the
same.

We should also consider exactly what is meant by the expression “current en-
closed by the path.” Suppose we solder a circuit together after passing the conductor
once through a rubber band, which we use to represent the closed path. Some strange
and formidable paths can be constructed by twisting and knotting the rubber band, but
if neither the rubber band nor the conducting circuit is broken, the current enclosed
by the path is that carried by the conductor. Now replace the rubber band by a circular
ring of spring steel across which is stretched a rubber sheet. The steel loop forms
the closed path, and the current-carrying conductor must pierce the rubber sheet if
the current is to be enclosed by the path. Again, we may twist the steel loop, and
we may also deform the rubber sheet by pushing our fist into it or folding it in any
way we wish. A single current-carrying conductor still pierces the sheet once, and
this is the true measure of the current enclosed by the path. If we should thread the
conductor once through the sheet from front to back and once from back to front, the
total current enclosed by the path is the algebraic sum, which is zero.

In more general language, given a closed path, we recognize this path as the
perimeter of an infinite number of surfaces (not closed surfaces). Any current-carrying
conductor enclosed by the path must pass through every one of these surfaces once.
Certainly some of the surfaces may be chosen in such a way that the conductor pierces
them twice in one direction and once in the other direction, but the algebraic total
current is still the same.

We will find that the nature of the closed path is usually extremely simple and can
be drawn on a plane. The simplest surface is, then, that portion of the plane enclosed
by the path. We need merely find the total current passing through this region of the
plane.

The application of Gauss’s law involves finding the total charge enclosed by a
closed surface; the application of Ampere’s circuital law involves finding the total
current enclosed by a closed path.
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Let us again find the magnetic field intensity produced by an infinitely long
filament carrying a current /. The filament lies on the z axis in free space (as in
Figure 7.3), and the current flows in the direction given by a,. Symmetry inspection
comes first, showing that there is no variation with z or ¢. Next we determine which
components of H are present by using the Biot-Savart law. Without specifically using
the cross product, we may say that the direction of dH is perpendicular to the plane
conaining dLL and R and therefore is in the direction of a;. Hence the only component
of His Hy, and it is a function only of p.

We therefore choose a path, to any section of which H is either perpendicular
or tangential, and along which H is constant. The first requirement (perpendicularity
or tangency) allows us to replace the dot product of Ampere’s circuital law with the
product of the scalar magnitudes, except along that portion of the path where H is
normal to the path and the dot product is zero; the second requirement (constancy)
then permits us to remove the magnetic field intensity from the integral sign. The
integration required is usually trivial and consists of finding the length of that portion
of the path to which H is parallel.

In our example, the path must be a circle of radius p, and Ampere’s circuital law
becomes

2w 2w
%H-dL: H¢,od¢>=H¢,0/ dp = Hy2mp =1
0 0

or

as before.

As a second example of the application of Ampere’s circuital law, consider an
infinitely long coaxial transmission line carrying a uniformly distributed total current
I in the center conductor and —/ in the outer conductor. The line is shown in Fig-
ure 7.8a. Symmetry shows that H is not a function of ¢ or z. In order to determine the
components present, we may use the results of the previous example by considering
the solid conductors as being composed of a large number of filaments. No filament
has a z component of H. Furthermore, the H, component at ¢ = 0°, produced by one
filament located at p = p1, ¢ = ¢y, is canceled by the H,, component produced by a
symmetrically located filament at p = p;, ¢ = —¢;. This symmetry is illustrated by
Figure 7.8b. Again we find only an H, component which varies with p.

A circular path of radius p, where p is larger than the radius of the inner conduc-
tor but less than the inner radius of the outer conductor, then leads immediately to

1
¢=% (a<p<b)
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P =P P =P
p=-9 =0,

H, only

(@) (b)

Figure 7.8 (a) Cross section of a coaxial cable carrying a uniformly
distributed current / in the inner conductor and —/ in the outer conductor. The
magnetic field at any point is most easily determined by applying Ampere’s
circuital law about a circular path. (b) Current filaments at p = p1, ¢ = £¢1,
produces H, components which cancel. For the total field, H = Hgay.

If we choose p smaller than the radius of the inner conductor, the current
enclosed is
2

P
Iena = 1 —
encl (12
and
2
0
or

Ip
Hy=—— <
0= (p <a)

If the radius p is larger than the outer radius of the outer conductor, no current is
enclosed and

Hy=0 (p>c)

Finally, if the path lies within the outer conductor, we have

232
p-—b

I 02 _ p2

2mp c2 — b?

The magnetic-field-strength variation with radius is shown in Figure 7.9 for

a coaxial cable in which b = 3a, ¢ = 4a. It should be noted that the magnetic

field intensity H is continuous at all the conductor boundaries. In other words, a

slight increase in the radius of the closed path does not result in the enclosure of a
tremendously different current. The value of Hg shows no sudden jumps.

Hy = b<p<c)

i)
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7]
2ma
3a
1
ima 4a
0
0 2a 3a=b da=c

Figure 7.9 The magnetic field intensity as a function of
radius in an infinitely long coaxial transmission line with
the dimensions shown.

The external field is zero. This, we see, results from equal positive and negative
currents enclosed by the path. Each produces an external field of magnitude 7 /2w p,
but complete cancellation occurs. This is another example of “shielding”; such a
coaxial cable carrying large currents would, in principle, not produce any noticeable
effect in an adjacent circuit.

As a final example, let us consider a sheet of current flowing in the positive y
direction and located in the z = 0 plane. We may think of the return current as equally
divided between two distant sheets on either side of the sheet we are considering. A
sheet of uniform surface current density K = K, a, is shown in Figure 7.10. H cannot
vary with x or y. If the sheet is subdivided into a number of filaments, it is evident
that no filament can produce an H, component. Moreover, the Biot-Savart law shows
that the contributions to H, produced by a symmetrically located pair of filaments
cancel. Thus, H. is zero also; only an H, component is present. We therefore choose
the path 1-1'-2'-2-1 composed of straight-line segments that are either parallel or

3f\\
1 \}3,
1/
A s
; K=Kyay —_—
2 — =

"N

Figure 7.10 A uniform sheet of surface current

K= Kyay in the z = 0 plane. H may be found by applying
Ampere’s circuital law about the paths 1-1'-2’-2-1 and
3-3/-2-2-3.



CHAPTER 7 The Steady Magnetic Field 193

perpendicular to H,. Ampere’s circuital law gives
H L+ Ho(—L)=K,L
or
H, —H, =K,
If the path 3-3’-2’-2-3 is now chosen, the same current is enclosed, and
Hs;— Ho, =K,
and therefore
H.y = Hy,

It follows that H, is the same for all positive z. Similarly, H, is the same for all
negative z. Because of the symmetry, then, the magnetic field intensity on one side
of the current sheet is the negative of that on the other. Above the sheet,

H,=1iK, (z>0)

2

while below it

H.=-1K, (z<0)

Letting ay be a unit vector normal (outward) to the current sheet, the result may be
written in a form correct for all z as

H=1Kxay (11)

If a second sheet of current flowing in the opposite direction, K = —K,a,, is
placed at z = &, (11) shows that the field in the region between the current sheets is

‘H:KxaN (0<z<h)’ (12)

and is zero elsewhere,

\Hzo (z<o,z>h)] (13)

The most difficult part of the application of Ampere’s circuital law is the deter-
mination of the components of the field that are present. The surest method is the
logical application of the Biot-Savart law and a knowledge of the magnetic fields of
simple form.

Problem 7.13 at the end of this chapter outlines the steps involved in applying
Ampere’s circuital law to an infinitely long solenoid of radius a and uniform current
density K,a,4, as shown in Figure 7.11a. For reference, the result is

H=K,a, (p<a) (14a)
H=0 (p > a) (14b)
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H=K,a,p<a
H=0,p>a

(well inside coil)

(@) (b)

Figure 7.11 (a) Anideal solenoid of infinite length with a circular
current sheet K = Kza,. (b) An N-turn solenoid of finite length d.

If the solenoid has a finite length d and consists of N closely wound turns of a
filament that carries a current / (Figure 7.11b), then the field at points well within the
solenoid is given closely by

NI
H = 7az (well within the solenoid) (15)

The approximation is useful it if is not applied closer than two radii to the open ends,
nor closer to the solenoid surface than twice the separation between turns.

For the toroids shown in Figure 7.12, it can be shown that the magnetic field
intensity for the ideal case, Figure 7.12a, is

H=Ka'00_

a a, (inside toroid) (16a)

H=0 (outside) (16b)

For the N-turn toroid of Figure 7.12b, we have the good approximations,

NI

H = —a, (inside toroid) (17a)
2rp

H=0 (outside) (17b)

as long as we consider points removed from the toroidal surface by several times the
separation between turns.

Toroids having rectangular cross sections are also treated quite readily, as you
can see for yourself by trying Problem 7.14.

Accurate formulas for solenoids, toroids, and coils of other shapes are available
in Section 2 of the Standard Handbook for Electrical Engineers (see References for
Chapter 5).
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77

N turns

K=K, a atp=py—a,z=0

Mk s e H:%aq, (well inside toroid)
=K, ™0 a, (inside toroi
P
H=0 (outside)
(@) )

Figure 7.12 (a) An ideal toroid carrying a surface current K in the
direction shown. (b) An N-turn toroid carrying a filamentary current /.

D7.3. Express the value of H in rectangular components at P (0, 0.2, 0) in the
field of: (a) a current filament, 2.5 A in the a, direction at x = 0.1, y = 0.3;
(b) a coax, centered on the z axis, witha = 0.3,b = 0.5,¢ = 0.6, =25A
in the a, direction in the center conductor; (c¢) three current sheets, 2.7a, A/m
aty =0.1, —1.4a, A/mat y = 0.15, and —1.3a, A/m at y = 0.25.

Ans. 1.989a, — 1.989a, A/m; —0.884a, A/m; 1.300a; A/m

7.3 CURL

We completed our study of Gauss’s law by applying it to a differential volume element
and were led to the concept of divergence. We now apply Ampere’s circuital law to
the perimeter of a differential surface element and discuss the third and last of the
special derivatives of vector analysis, the curl. Our objective is to obtain the point
form of Ampere’s circuital law.

Again we choose rectangular coordinates, and an incremental closed path of sides
Ax and Ay is selected (Figure 7.13). We assume that some current, as yet unspecified,
produces a reference value for H at the center of this small rectangle,

HO = Hypa, + Hyan + HZOaz

The closed line integral of H about this path is then approximately the sum of the four
values of H - AL on each side. We choose the direction of traverse as 1-2-3-4-1, which
corresponds to a current in the a, direction, and the first contribution is therefore

(H-AL)|—» = Hy 152AYy

The value of H, on this section of the path may be given in terms of the reference
value Hyg at the center of the rectangle, the rate of change of H, with x, and the
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H:HOZHYO ax+]~]yoay+l—120 a,

Figure 7.13 Anincremental closed path in
rectangular coordinates is selected for the
application of Ampere’s circuital law to determine
the spatial rate of change of H.

distance Ax /2 from the center to the midpoint of side 1-2:

, oH, (1
Hy,l—z = Hy() =+ W EAX

Thus
_ 1904,

(H . AL)1,2 = Hyo + - —Ax Ay

2 0x

Along the next section of the path we have

1 0H,
(H-AL)y—3 = Hyp3(—Ax) = —(on +3 oy Ay) Ax

Continuing for the remaining two segments and adding the results,
0H 0H,
%Hﬂi L — T )AxAy
ax dy

By Ampere’s circuital law, this result must be equal to the current enclosed by the
path, or the current crossing any surface bounded by the path. If we assume a general
current density J, the enclosed current is then Al = J,AxAy, and

. (0H, 0H, .
H-dL = [ — — AxAy = J,AxAy
ax dy ’

or
§H-dL | 0H, 0H,
AxAy ~ ox 9 y
As we cause the closed path to shrink, the preceding expression becomes more nearly
exact, and in the limit we have the equality

fH-dL  90H, 9dH,
im — =—— =J. (18)
Ax,Ay—>0 AxAy ox ay

z
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After beginning with Ampere’s circuital law equating the closed line integral of
H to the current enclosed, we have now arrived at a relationship involving the closed
line integral of H per unit area enclosed and the current per unit area enclosed, or
current density. We performed a similar analysis in passing from the integral form of
Gauss’s law, involving flux through a closed surface and charge enclosed, to the point
form, relating flux through a closed surface per unit volume enclosed and charge per
unit volume enclosed, or volume charge density. In each case a limit is necessary to
produce an equality.

If we choose closed paths that are oriented perpendicularly to each of the re-
maining two coordinate axes, analogous processes lead to expressions for the x and
y components of the current density,

fH-dL _9H. 0H,

im = — =J; (19)
Ay Az—0 AyAz ay 0z
and
H-dL 0H, 0H
im $H-dL = -—— =, (20)
Az, Ax—0 AzAx 0z ax

Comparing (18)—(20), we see that a component of the current density is given by
the limit of the quotient of the closed line integral of H about a small path in a plane
normal to that component and of the area enclosed as the path shrinks to zero. This
limit has its counterpart in other fields of science and long ago received the name of
curl. The curl of any vector is a vector, and any component of the curl is given by
the limit of the quotient of the closed line integral of the vector about a small path in
a plane normal to that component desired and the area enclosed, as the path shrinks
to zero. It should be noted that this definition of curl does not refer specifically to a
particular coordinate system. The mathematical form of the definition is

H-dL

(curl H)y = AlsN—>o ASh

2n

where ASy is the planar area enclosed by the closed line integral. The N subscript
indicates that the component of the curl is that component which is normal to the
surface enclosed by the closed path. It may represent any component in any coordinate
system.

In rectangular coordinates, the definition (21) shows that the x, y, and z compo-
nents of the curl H are given by (18)—(20), and therefore

L H 0H, 0H, _ dH, 0H, " 0H, 0H, a 22)
cul H=| — — —= )a, —_— = e
ay 0z 0z ax )77 ax ay )¢
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This result may be written in the form of a determinant,

a, a, a

| 20 o3
R P dy 9z
H, H, H,

and may also be written in terms of the vector operator,

curl H=V xH 24)

Equation (22) is the result of applying the definition (21) to the rectangular coordi-
nate system. We obtained the z component of this expression by evaluating Ampere’s
circuital law about an incremental path of sides Ax and Ay, and we could have ob-
tained the other two components just as easily by choosing the appropriate paths. Equa-
tion (23) is a neat method of storing the rectangular coordinate expression for curl; the
form is symmetrical and easily remembered. Equation (24) is even more concise and
leads to (22) upon applying the definitions of the cross product and vector operator.

The expressions for curl H in cylindrical and spherical coordinates are derived in
Appendix A by applying the definition (21). Although they may be written in determi-
nant form, as explained there, the determinants do not have one row of unit vectors on
top and one row of components on the bottom, and they are not easily memorized. For
this reason, the curl expansions in cylindrical and spherical coordinates that follow
here and appear inside the back cover are usually referred to whenever necessary.

1 0H. oH, oH oH.
onie (L), (0, G

9 9 d 0
p 0¢p V4 z 2 25)
13(pH,) 1 0H, o
_ — ——— )a, (cylindrical)
p  0p p 3¢
I ((Hysin®) oH, 1/ 1 8H, 8(H,
T (Hysin®)  0Hy ot L= _ 9(rHy) -
rsinf 96 ap r\sin6 9¢ or (26)
+ 1 (3(Hy) _ 9H: a; (spherical)
Z( &) i
\or o )% P

Although we have described curl as a line integral per unit area, this does not
provide everyone with a satisfactory physical picture of the nature of the curl operation,
for the closed line integral itself requires physical interpretation. This integral was
first met in the electrostatic field, where we saw that f E - dL = 0. Inasmuch as the
integral was zero, we did not belabor the physical picture. More recently we have
discussed the closed line integral of H, § H-dL = I. Either of these closed line
integrals is also known by the name of circulation, a term borrowed from the field of
fluid dynamics.
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Figure 7.14 (a) The curl meter shows a component of the curl of the water velocity
into the page. (b) The curl of the magnetic field intensity about an infinitely long filament
is shown.

The circulation of H, or § H-dL, is obtained by multiplying the component
of H parallel to the specified closed path at each point along it by the differential
path length and summing the results as the differential lengths approach zero and as
their number becomes infinite. We do not require a vanishingly small path. Ampere’s
circuital law tells us that if H does possess circulation about a given path, then current
passes through this path. In electrostatics we see that the circulation of E is zero about
every path, a direct consequence of the fact that zero work is required to carry a charge
around a closed path.

We may describe curl as circulation per unit area. The closed path is vanishingly
small, and curl is defined at a point. The curl of E must be zero, for the circulation
is zero. The curl of H is not zero, however; the circulation of H per unit area is the
current density by Ampere’s circuital law [or (18), (19), and (20)].

Skilling’ suggests the use of a very small paddle wheel as a “curl meter.” Our
vector quantity, then, must be thought of as capable of applying a force to each blade
of the paddle wheel, the force being proportional to the component of the field normal
to the surface of that blade. To test a field for curl, we dip our paddle wheel into the
field, with the axis of the paddle wheel lined up with the direction of the component of
curl desired, and note the action of the field on the paddle. No rotation means no curl;
larger angular velocities mean greater values of the curl; a reversal in the direction of
spin means a reversal in the sign of the curl. To find the direction of the vector curl and
not merely to establish the presence of any particular component, we should place
our paddle wheel in the field and hunt around for the orientation which produces the
greatest torque. The direction of the curl is then along the axis of the paddle wheel,
as given by the right-hand rule.

As an example, consider the flow of water in a river. Figure 7.14a shows the
longitudinal section of a wide river taken at the middle of the river. The water velocity
is zero at the bottom and increases linearly as the surface is approached. A paddle
wheel placed in the position shown, with its axis perpendicular to the paper, will turn
in a clockwise direction, showing the presence of a component of curl in the direction

3 See the References at the end of the chapter.
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