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interface, and they must be equal. Then we may find in succession Dy, D, ps1, Ps2,
and Q, obtaining a capacitance

S S
C:ﬂldﬁzcﬁcz (10)

as we should expect.

At this time we can do very little with a capacitor in which two dielectrics
are used in such a way that the interface is not everywhere normal or parallel to
the fields. Certainly we know the boundary conditions at each conductor and at the
dielectric interface; however, we do not know the fields to which to apply the boundary
conditions. Such a problem must be put aside until our knowledge of field theory has
increased and we are willing and able to use more advanced mathematical techniques.

D6.2. Determine the capacitance of: (a) a 1-ft length of 35B/U coaxial cable,
which has an inner conductor 0.1045 in. in diameter, a polyethylene dielectric
(€, = 2.26 from Table C.1), and an outer conductor that has an inner diameter of
0.680in.; (b) a conducting sphere of radius 2.5 mm, covered with a polyethylene
layer 2 mm thick, surrounded by a conducting sphere of radius 4.5 mm; (¢) two
rectangular conducting plates, 1 cm by 4 cm, with negligible thickness, between
which are three sheets of dielectric, each 1 cm by 4 cm, and 0.1 mm thick, having
dielectric constants of 1.5, 2.5, and 6.

Ans. 20.5 pF; 1.41 pF; 28.7 pF

6.4 CAPACITANCE OF A TWO-WIRE LINE

We next consider the problem of the two-wire line. The configuration consists of two
parallel conducting cylinders, each of circular cross section, and we will find complete
information about the electric field intensity, the potential field, the surface-charge-
density distribution, and the capacitance. This arrangement is an important type of
transmission line, as is the coaxial cable.

We begin by investigating the potential field of two infinite line charges. Figure 6.4
shows a positive line charge in the xz plane at x = a and a negative line charge at

x = —a. The potential of a single line charge with zero reference at a radius of Ry is
R
V = p_L ln_o
2me R

We now write the expression for the combined potential field in terms of the radial
distances from the positive and negative lines, R; and R,, respectively,

oL Rio Ry oL, RioR2
V=—|Inh——-—In—)=—In
2me Rz()Rl
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P(x,y,0)

—PL z oL

Figure 6.4 Two parallel infinite line charges carrying opposite
charge. The positive line is at x = a, y = 0, and the negative line
isat x = —a, y = 0. A general point P(x, y, 0) in the xy plane is
radially distant Ry and R, from the positive and negative lines,
respectively. The equipotential surfaces are circular cylinders.

We choose Rjp = Ry, thus placing the zero reference at equal distances from each
line. This surface is the x = 0 plane. Expressing R; and R, in terms of x and y,

oL (x +a)*>+y? pr . (x+ay+y?
ST P AL S P L (11)
2me \| (x —a)? +y?  dme  (x —a)? +y?

In order to recognize the equipotential surfaces and adequately understand the
problem we are going to solve, some algebraic manipulations are necessary. Choosing
an equipotential surface V = V), we define K as a dimensionless parameter that is
a function of the potential V),

K| = etrevi/on (12)
so that
K = Gtaity
(x —a)*+y?
After multiplying and collecting like powers, we obtain
Ki+1
2 1 2, 2
— 2 =0
X ax Ki—1 +y +a

We next work through a couple of lines of algebra and complete the square,
Ki+1\>  , [(2aJK\
X —a +y ="
K —1 K, —1

This shows that the V = V) equipotential surface is independent of z (or is a cylinder)
and intersects the xy plane in a circle of radius b,

_ 2a«/K1
K —1

b
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which is centered at x = h, y = 0, where

Ki+1
a

Ky —1

Now let us attack a physical problem by considering a zero-potential conducting

plane located at x = 0, and a conducting cylinder of radius b and potential V with
its axis located a distance & from the plane. We solve the last two equations for a and
K in terms of the dimensions b and £,

a=+h—b? (13)

h =

and
NI s \/ﬁ (14)
But the potential of the cylinder is Vj, so Eq. (12) leads to
\/?1 = 2™ Vo/pL
Therefore,
pL = 41’;;‘? (15)

Thus, given h, b, and V), we may determine a, p;, and the parameter K;. The
capacitance between the cylinder and plane is now available. For a length L in the z
direction, we have

pLL _ direl. . 2mel

C=—=—"=—-
Vo InK; In/ K,

or
c 2mel 2mel
In[(h + ~/hZ = b2)/b]  cosh™'(h/b)
The solid line in Figure 6.5 shows the cross section of a cylinder of 5 m radius
at a potential of 100 V in free space, with its axis 13 m distant from a plane at zero
potential. Thus, b = 5, h = 13, V, = 100, and we rapidly find the location of the
equivalent line charge from Eq. (13),

a=vVh:—b=/132-52=12m

(16)

the value of the potential parameter K| from Eq. (14),

\/?_ h+~h*>—b> 13412
' b s
the strength of the equivalent line charge from Eq. (15),

4eVy 4w x 8.854 x 10712 x 100

=5 K, =25

PL= K, In25 e
and the capacitance between cylinder and plane from Eq. (16),
27e 27 x 8.854 x 10712

C = - = -1 = 346 pF/m
cosh™ " (h/b) cosh™ ' (13/5)
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-~ ~
- ~
/ \
Equivalent
line charge
\
|
— Center, x =13, |
y=0,V= IOO/

\ Center,x=18,y=0
N radius=13.42
\\e< v=50 _~7

—

~ —_

Figure 6.5 A numerical example of the
capacitance, linear charge density, position of an
equivalent line charge, and characteristics of the
mid-equipotential surface for a cylindrical
conductor of 5 m radius at a potential of 100V,
parallel to and 13 m from a conducting plane at
zero potential.

We may also identify the cylinder representing the 50 V equipotential surface by
finding new values for K, i, and b. We first use Eq. (12) to obtain

-12 -9
Kl _ e47reV1/pL _ e4rr><8.854><10 x50/3.46x10 —5.00

Then the new radius is

2a/Ki 2% 125
Ki—1  5-1
and the corresponding value of # becomes

K 1 541
h=at T 122 _1gm
K 1—1 5-1
This cylinder is shown in color in Figure 6.5.
The electric field intensity can be found by taking the gradient of the potential

field, as given by Eq. (11),

b= =1342m

E— _v[ w}
dme  (x —a)* + y?
Thus,
|:2(x +a)a, + 2yay 2(x —a)a, + 2yay]
Cdme|  (x+a)?+ )2 (x —a)? + y?
and

(x+a) +y? (x —a)* +y?

D=¢E= _p_L[(Ha)ax +tya, (x—aa, +yay}
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If we evaluate D, at x = h — b, y = 0, we may obtain pg max

ol h—b+a h—b—a
2| (h—b+a)?* (h—b—a)?

Ps.max = — Dy x=p—p,y=0 =

For our example,
346 x 1077 [ 13—-5+12 13-5-12
2 |:(13—5+12)2 C(13=5-12)2
Similarly, ps min = Dy x=h+b,y=0, and
346 x 107° [13+5+12 13+5-12
2 [ 300 6

08, max = } = 0.165 nC/m>

08, min = ] = 0.073 nC/m>

Thus,

LS, max = 2~25pS,min
If we apply Eq. (16) to the case of a conductor for which b < A, then

ln[(h +vh?— bz)/b] =In[(h + h)/b] =1In(2h /D)
and
2mel
= InQh/b)
The capacitance between two circular conductors separated by a distance 2h
is one-half the capacitance given by Eqs. (16) or (17). This last answer is of inter-

est because it gives us an expression for the capacitance of a section of two-wire
transmission line, one of the types of transmission lines studied later in Chapter 13.

(b < h) a7)

D6.3. A conducting cylinder with aradius of 1 cm and at a potential of 20 V is
parallel to a conducting plane which is at zero potential. The plane is 5 cm distant
from the cylinder axis. If the conductors are embedded in a perfect dielectric
for which €, =4.5, find: (a) the capacitance per unit length between cylinder
and plane; (b) ps.max On the cylinder.

Ans. 109.2 pF/m; 42.6 nC/m?

6.5 USING FIELD SKETCHES TO ESTIMATE
CAPACITANCE IN TWO-DIMENSIONAL
PROBLEMS

In capacitance problems in which the conductor configurations cannot be easily de-
scribed using a single coordinate system, other analysis techniques are usually applied.
Such methods typically involve a numerical determination of field or potential values
over a grid within the region of interest. In this section, another approach is described
that involves making sketches of field lines and equipotential surfaces in a manner
that follows a few simple rules. This approach, although lacking the accuracy of more
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elegant methods, allows fairly quick estimates of capacitance while providing a useful
visualization of the field configuration.

The method, requiring only pencil and paper, is capable of yielding good accu-
racy if used skillfully and patiently. Fair accuracy (5 to 10 percent on a capacitance
determination) may be obtained by a beginner who does no more than follow the
few rules and hints of the art. The method to be described is applicable only to fields
in which no variation exists in the direction normal to the plane of the sketch. The
procedure is based on several facts that we have already demonstrated:

1. A conductor boundary is an equipotential surface.

2. The electric field intensity and electric flux density are both perpendicular to the
equipotential surfaces.

3. E and D are therefore perpendicular to the conductor boundaries and possess
zero tangential values.

4. The lines of electric flux, or streamlines, begin and terminate on charge and
hence, in a charge-free, homogeneous dielectric, begin and terminate only on
the conductor boundaries.

We consider the implications of these statements by drawing the streamlines on
a sketch that already shows the equipotential surfaces. In Figure 6.6a, two conductor
boundaries are shown, and equipotentials are drawn with a constant potential differ-
ence between lines. We should remember that these lines are only the cross sections
of the equipotential surfaces, which are cylinders (although not circular). No variation
in the direction normal to the surface of the paper is permitted. We arbitrarily choose
to begin a streamline, or flux line, at A on the surface of the more positive conductor.
It leaves the surface normally and must cross at right angles the undrawn but very
real equipotential surfaces between the conductor and the first surface shown. The
line is continued to the other conductor, obeying the single rule that the intersection
with each equipotential must be square.

In a similar manner, we may start at B and sketch another streamline ending
at B’. We need to understand the meaning of this pair of streamlines. The streamline,

Equipotentials

B
Conductor @M AL, \4 71
bounda Y /_\ B’
Yy \Conductor R l
boundary ALy

(@) (b)

Figure 6.6 (a) Sketch of the equipotential surfaces between two conductors. The
increment of potential between each of the two adjacent equipotentials is the same.
(b) One flux line has been drawn from A to A’, and a second from B to B'.
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by definition, is everywhere tangent to the electric field intensity or to the electric flux
density. Because the streamline is tangent to the electric flux density, the flux density
is tangent to the streamline, and no electric flux may cross any streamline. In other
words, if there is a charge of 5 uC on the surface between A and B (and extending
1 m into the paper), then 5 uC of flux begins in this region, and all must terminate
between A’ and B’. Such a pair of lines is sometimes called a flux fube, because it
physically seems to carry flux from one conductor to another without losing any.

We next construct a third streamline, and both the mathematical and visual in-
terpretations we may make from the sketch will be greatly simplified if we draw this
line starting from some point C chosen so that the same amount of flux is carried in
the tube BC as is contained in AB. How do we choose the position of C?

The electric field intensity at the midpoint of the line joining A to B may be
found approximately by assuming a value for the flux in the tube AB, say AW, which
allows us to express the electric flux density by AW/AL,, where the depth of the tube
into the paper is 1 m and AL, is the length of the line joining A to B. The magnitude
of E is then

1 AV
e AL,

We may also find the magnitude of the electric field intensity by dividing the
potential difference between points A and Aj, lying on two adjacent equipotential
surfaces, by the distance from A to A;. If this distance is designated ALy and an
increment of potential between equipotentials of AV is assumed, then

AV
ALy

This value applies most accurately to the point at the middle of the line segment
from A to A, while the previous value was most accurate at the midpoint of the line
segment from A to B. If, however, the equipotentials are close together (AV small)
and the two streamlines are close together (AW small), the two values found for the
electric field intensity must be approximately equal,

1 AV AV
€ AL, ALy

Throughout our sketch we have assumed a homogeneous medium (e constant), a
constant increment of potential between equipotentials (AV constant), and a constant

amount of flux per tube (AW constant). To satisfy all these conditions, Eq. (18) shows
that

(18)

AL, 1 AY
= constant = — ——
ALN e AV

19)

A similar argument might be made at any point in our sketch, and we are therefore
led to the conclusion that a constant ratio must be maintained between the distance
between streamlines as measured along an equipotential, and the distance between
equipotentials as measured along a streamline. It is this ratio that must have the same
value at every point, not the individual lengths. Each length must decrease in regions
of greater field strength, because AV is constant.
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Figure 6.7 The remaining of the
streamlines have been added to

Fig. 6.6b by beginning each new line
normally to the conductor and
maintaining curvilinear squares
throughout the sketch.

The simplest ratio we can use is unity, and the streamline from B to B’ shown in
Figure 6.6b was started at a point for which AL, = AL . Because the ratio of these
distances is kept at unity, the streamlines and equipotentials divide the field-containing
region into curvilinear squares, a term implying a planar geometric figure that differs
from a true square in having slightly curved and slightly unequal sides but which
approaches a square as its dimensions decrease. Those incremental surface elements
in our three coordinate systems which are planar may also be drawn as curvilinear
squares.

We may now sketch in the remainder of the streamlines by keeping each small
box as square as possible. One streamline is begun, an equipotential line is roughed
in, another streamline is added, forming a curvilinear square, and the map is gradually
extended throughout the desired region. The complete sketch is shown in Figure 6.7.

The construction of a useful field map is an art; the science merely furnishes
the rules. Proficiency in any art requires practice. A good problem for beginners is
the coaxial cable or coaxial capacitor, since all the equipotentials are circles while the
flux lines are straight lines. The next sketch attempted should be two parallel circular
conductors, where the equipotentials are again circles but with different centers. Each
of these is given as a problem at the end of the chapter.

Figure 6.8 shows a completed map for a cable containing a square inner conductor
surrounded by a circular conductor. The capacitance is found from C = Q/V; by
replacing Q by NgAQ = Np AW, where Ny is the number of flux tubes joining
the two conductors, and letting Vo) = Ny AV, where Ny is the number of potential
increments between conductors,

c - NoAQ
T NyAV

and then using Eq. (19),

No AL N
=L 22

- = (20)
Ny ALy Ny
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Conductor
boundary
Repeats
Conductor 5 | |
boundary
Repeats

Figure 6.8 An example of a curvilinear-square
field map. The side of the square is two-thirds the
radius of the circle. Ny = 4 and Ng = 8 x 3.25

x 26, and therefore C = ¢gNg/Ny = 57.6 pF/m.

since AL,/ALy = 1. The determination of the capacitance from a flux plot merely
consists of counting squares in two directions, between conductors and around either
conductor. From Figure 6.8 we obtain

8 x 3.25
C = EQT = 57.6 pF/m

Ramo, Whinnery, and Van Duzer have an excellent discussion with examples
of the construction of field maps by curvilinear squares. They offer the following
suggestions:'

1. Plan on making a number of rough sketches, taking only a minute or so apiece,
before starting any plot to be made with care. The use of transparent paper over
the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between electrodes into an equal number
of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentials in the region where the field is known best,
for example, in some region where it approaches a uniform field. Extend the
equipotentials according to your best guess throughout the plot. Note that they
should tend to hug acute angles of the conducting boundary and be spread out
in the vicinity of obtuse angles of the boundary.

! By permission from S. Ramo, J. R. Whinnery, and T. Van Duzer, pp. 51-52. See References at the end
of this chapter. Curvilinear maps are discussed on pp. 50-52.
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Draw in the orthogonal set of field lines. As these are started, they should form
curvilinear squares, but, as they are extended, the condition of orthogonality
should be kept paramount, even though this will result in some rectangles with
ratios other than unity.

Look at the regions with poor side ratios and try to see what was wrong with the
first guess of equipotentials. Correct them and repeat the procedure until
reasonable curvilinear squares exist throughout the plot.

In regions of low field intensity, there will be large figures, often of five or six
sides. To judge the correctness of the plot in this region, these large units should
be subdivided. The subdivisions should be started back away from the region
needing subdivision, and each time a flux tube is divided in half, the potential
divisions in this region must be divided by the same factor.

D6.4. Figure 6.9 shows the cross section of two circular cylinders at potentials
of 0 and 60 V. The axes are parallel and the region between the cylinders is air-
filled. Equipotentials at 20 V and 40 V are also shown. Prepare a curvilinear-
square map on the figure and use it to establish suitable values for: (a) the
capacitance per meter length; (b) E at the left side of the 60 V conductor if its
true radius is 2 mm; (c) pg at that point.

Ans. 69 pF/m; 60 kV/m; 550 nC/m?

Figure 6.9 See Problem D6.4.
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6.6 POISSON’S AND LAPLACE’S EQUATIONS

In preceding sections, we have found capacitance by first assuming a known charge
distribution on the conductors and then finding the potential difference in terms of
the assumed charge. An alternate approach would be to start with known potentials
on each conductor, and then work backward to find the charge in terms of the known
potential difference. The capacitance in either case is found by the ratio Q/ V.

The first objective in the latter approach is thus to find the potential function
between conductors, given values of potential on the boundaries, along with possible
volume charge densities in the region of interest. The mathematical tools that enable
this to happen are Poisson’s and Laplace’s equations, to be explored in the remainder
of this chapter. Problems involving one to three dimensions can be solved either ana-
lytically or numerically. Laplace’s and Poisson’s equations, when compared to other
methods, are probably the most widely useful because many problems in engineering
practice involve devices in which applied potential differences are known, and in
which constant potentials occur at the boundaries.

Obtaining Poisson’s equation is exceedingly simple, for from the point form of
Gauss’s law,

V-D=p, 21
the definition of D,
D =¢E (22)
and the gradient relationship,
E=-VV (23)

by substitution we have
V:-D=V.(€E)=—-V.(eVV)=p,

or

v.vy =2 (24)
€
for a homogeneous region in which € is constant.
Equation (24) is Poisson’s equation, but the “double V”’ operation must be inter-
preted and expanded, at least in rectangular coordinates, before the equation can be
useful. In rectangular coordinates,

V-A=

VV = —a, + —a, + —
y
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a [V a [V a [adV
VvwW=——)+—(=)+—(=
dx \ dx ay \ dy az \ 0z

_PV L VY 03)

oax2 0 9yr o a2

and therefore

Usually the operation V - V is abbreviated V2 (and pronounced “del squared”), a good
reminder of the second-order partial derivatives appearing in Eq. (5), and we have

%V v v .
VV="—+—+ =

— = 26
oxz2  9yr 972 € (26)

in rectangular coordinates.
If p, = 0, indicating zero volume charge density, but allowing point charges,
line charge, and surface charge density to exist at singular locations as sources of the

field, then

which is Laplace’s equation. The V? operation is called the Laplacian of V.
In rectangular coordinates Laplace’s equation is

S\ AN A 54

2 B—yz + ) =0 (rectangular) (28)

and the form of V2V in cylindrical and spherical coordinates may be obtained by using
the expressions for the divergence and gradient already obtained in those coordinate
systems. For reference, the Laplacian in cylindrical coordinates is

vy=L0 (27, 1 oy +—82V (cylindrical) (29)
— — — J— — cylindrica
p op\"op p*\ 992 322 Y

and in spherical coordinates is

viy L9 (.9V L ! 9 sineav + : e (spherical)
=— —(r"— _ — —_—
7Zar\" ar ) " 7Zsino 20 30 ) " r2sin?e 9¢r P

(30)

These equations may be expanded by taking the indicated partial derivatives, but it is
usually more helpful to have them in the forms just given; furthermore, itis much easier
to expand them later if necessary than it is to put the broken pieces back together again.

Laplace’s equation is all-embracing, for, applying as it does wherever volume
charge density is zero, it states that every conceivable configuration of electrodes
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or conductors produces a field for which V2V = 0. All these fields are different,
with different potential values and different spatial rates of change, yet for each
of them V2V = 0. Because every field (if p, = 0) satisfies Laplace’s equation,
how can we expect to reverse the procedure and use Laplace’s equation to find one
specific field in which we happen to have an interest? Obviously, more information is
required, and we shall find that we must solve Laplace’s equation subject to certain
boundary conditions.

Every physical problem must contain at least one conducting boundary and usu-
ally contains two or more. The potentials on these boundaries are assigned values,
perhaps Vy, Vi, ..., or perhaps numerical values. These definite equipotential sur-
faces will provide the boundary conditions for the type of problem to be solved. In
other types of problems, the boundary conditions take the form of specified values of
E (alternatively, a surface charge density, ps) on an enclosing surface, or a mixture
of known values of V and E.

Before using Laplace’s equation or Poisson’s equation in several examples, we
must state that if our answer satisfies Laplace’s equation and also satisfies the boundary
conditions, then it is the only possible answer. This is a statement of the Uniqueness
Theorem, the proof of which is presented in Appendix D.

D6.5. Calculate numerical values for V and p, at point P in free space if:

4yz 2 b4
(a)V = ﬁ’ at P(1,2,3); (b) V = S5p~cos2¢, at P(p = 3,¢ = —,
X

3
2 cos ¢

z2=2)()V=—5—,at P(r =05,0 =45° ¢ = 60°).

r

Ans. 12V, —106.2 pC/m>; —22.5V,0;4 V, 0

6.7 EXAMPLES OF THE SOLUTION
OF LAPLACE’S EQUATION

Several methods have been developed for solving Laplace’s equation. The simplest
method is that of direct integration. We will use this technique to work several exam-
ples involving one-dimensional potential variation in various coordinate systems in
this section.

The method of direct integration is applicable only to problems that are “one-
dimensional,” or in which the potential field is a function of only one of the three
coordinates. Since we are working with only three coordinate systems, it might seem,
then, that there are nine problems to be solved, but a little reflection will show that
a field that varies only with x is fundamentally the same as a field that varies only
with y. Rotating the physical problem a quarter turn is no change. Actually, there are
only five problems to be solved, one in rectangular coordinates, two in cylindrical,
and two in spherical. We will solve them all.

First, let us assume that V' is a function only of x and worry later about which
physical problem we are solving when we have a need for boundary conditions.
Laplace’s equation reduces to

Vv

ax2
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and the partial derivative may be replaced by an ordinary derivative, since V is not a
function of y or z,

v
dx?
We integrate twice, obtaining
dv
- = A
dx
and
V=Ax+B 3D

where A and B are constants of integration. Equation (31) contains two such constants,
as we would expect for a second-order differential equation. These constants can be
determined only from the boundary conditions.

Since the field varies only with x and is not a function of y and z, then V is a
constant if x is a constant or, in other words, the equipotential surfaces are parallel
planes normal to the x axis. The field is thus that of a parallel-plate capacitor, and as
soon as we specify the potential on any two planes, we may evaluate our constants of
integration.

Start with the potential function, Eq. (31), and find the capacitance of a parallel-plate
capacitor of plate area S, plate separation d, and potential difference V|, between
plates.

Solution. Take V =0atx =0and V = Vj at x = d. Then from Eq. (31),

Vo
A=— B=0
d
and
Vox
V=— 32
7 (32)

We still need the total charge on either plate before the capacitance can be found.
We should remember that when we first solved this capacitor problem, the sheet of
charge provided our starting point. We did not have to work very hard to find the
charge, for all the fields were expressed in terms of it. The work then was spent in
finding potential difference. Now the problem is reversed (and simplified).

The necessary steps are these, after the choice of boundary conditions has been
made:

1. Given V,use E = —VV to find E.

Use D = €E to find D.

Evaluate D at either capacitor plate, D = Dg = Dyay.
Recognize that pg = Dy.

S

Find Q by a surface integration over the capacitor plate, Q = |, g Psds.
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Here we have

X
V= VOE
Vo
E=——a,
d
Vo
D=—-—a,
“d
Vo
DS = D’x:O = —ezax
ay = ay
Dy = GVO =
N = 4 Ps
—EV() V()S
0= [ “ras =Ty
s
and the capacitance is
Q] €S
C==== 33
Vo~ d (33)

We will use this procedure several times in the examples to follow.

Because no new problems are solved by choosing fields which vary only with y or
with z in rectangular coordinates, we pass on to cylindrical coordinates for our next
example. Variations with respect to z are again nothing new, and we next assume
variation with respect to p only. Laplace’s equation becomes

1a< av>
——(p—)=0
pop\ dp

Noting the p in the denominator, we exclude p = 0 from our solution and then

multiply by p and integrate,
av. A
i

where a total derivative replaces the partial derivative because V varies only with p.
Next, rearrange, and integrate again,
V=Alnp+B (34)

The equipotential surfaces are given by p = constant and are cylinders, and the
problem is that of the coaxial capacitor or coaxial transmission line. We choose a
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potential difference of V, by letting V = Vyatp =a,V =0atp = b,b > a, and
obtain

In(b/p)

"In(b/a) (35)

from which

E = Yo 1 a,
p In(b/a)
GV()
aln(b/a)
e Vo2mal
aln(b/a)

Dyp=a) =

Q:

2mel

~ In(b/a) (36)

which agrees with our result in Section 6.3 (Eq. (5)).

EXAMPLE 6.4

Now assume that V' is a function only of ¢ in cylindrical coordinates. We might look
at the physical problem first for a change and see that equipotential surfaces are given
by ¢ = constant. These are radial planes. Boundary conditions might be V = 0 at
¢ =0and V = Vj at ¢ = «, leading to the physical problem detailed in Figure 6.10.

Insulating
gap V="V,
. . V=0
¢=0

Figure 6.10 Two infinite radial planes with an
interior angle «. An infinitesimal insulating gap exists
at p = 0. The potential field may be found by applying
Laplace’s equation in cylindrical coordinates.
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Laplace’s equation is now

1 3%V —0
p? 3¢?
We exclude p = 0 and have
d*v
W _
The solution is
V=A¢p+B

The boundary conditions determine A and B, and

vzvo9 (37)
o

Taking the gradient of Eq. (37) produces the electric field intensity,

Vo ay
ap

E = (38)

and it is interesting to note that E is a function of p and not of ¢. This does not
contradict our original assumptions, which were restrictions only on the potential
field. Note, however, that the vector field E is in the ¢ direction.

A problem involving the capacitance of these two radial planes is included at the
end of the chapter.

We now turn to spherical coordinates, dispose immediately of variations with respect
to ¢ only as having just been solved, and treat first V. = V (r).
The details are left for a problem later, but the final potential field is given by

1 1

V=L b
‘T 1 (39)

a b

where the boundary conditions are evidently V=0atr=band V=Vyatr = a,
b > a. The problem is that of concentric spheres. The capacitance was found previ-
ously in Section 6.3 (by a somewhat different method) and is

dme

(40)
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EXAMPLE 6.6

In spherical coordinates we now restrict the potential functionto V = V(0), obtaining

1 d av
L (snell) =0
r2sinf d@(sm d@)

We exclude r = 0 and & = 0 or 7 and have

dv
sind— = A
do

Adb
V=/ - + B
sin &

The second integral is then

which is not as obvious as the previous ones. From integral tables (or a good memory)
we have

V=Aln(tan§>+B 41)

The equipotential surfaces of Eq. (41) are cones. Figure 6.11 illustrates the case
where V=0atf =n/2and V = Vyat = o, « < /2. We obtain

(=3)
In| tan 2
V=V 42)

ln<tan E)
2

Gap
/

V=0

Figure 6.11 Forthe cone 6 = « at V/y and the
plane 6 = /2 at V = 0, the potential field is given by
V = Vy[in(tan 6/2)]/[In(tan «/2)].
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In order to find the capacitance between a conducting cone with its vertex sepa-
rated from a conducting plane by an infinitesimal insulating gap and its axis normal
to the plane, we first find the field strength:

—1 v Vi
E=-VV=—_—a = ——039
r

96 rsin@ln(tan %)

The surface charge density on the cone is then

—€ V()
ps =
) o
rsina In| tan —
(=3)
producing a total charge Q,
0= —eVp /‘ /z”rsmocdd)dr

sin o ln( tan — )
—2mey Vi o
_ e Vo / dr
0

o
ln(tan —)
2

This leads to an infinite value of charge and capacitance, and it becomes necessary to
consider a cone of finite size. Our answer will now be only an approximation because
the theoretical equipotential surface is & = «, a conical surface extending from r = 0
to r = 0o, whereas our physical conical surface extends only from r = 0 to, say,
r = ry. The approximate capacitance is

. 2mery
C= ——— 43)

o
ln<cot —)
2

If we desire a more accurate answer, we may make an estimate of the capacitance
of the base of the cone to the zero-potential plane and add this amount to our answer.
Fringing, or nonuniform, fields in this region have been neglected and introduce an
additional source of error.

D6.6. Find |E| at P(3, 1,2) in rectangular coordinates for the field of: (@)
two coaxial conducting cylinders, V = 50 Vat p = 2 m,and V = 20 V
at p = 3 m; (b) two radial conducting planes, V = 50 V at ¢ = 10°, and
V =20V at ¢ = 30°.

Ans. 23.4V/m; 27.2 V/m
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6.8 EXAMPLE OF THE SOLUTION
OF POISSON’S EQUATION: THE P-N
JUNCTION CAPACITANCE

To select areasonably simple problem that might illustrate the application of Poisson’s
equation, we must assume that the volume charge density is specified. This is not
usually the case, however; in fact, it is often the quantity about which we are seeking
further information. The type of problem which we might encounter later would
begin with a knowledge only of the boundary values of the potential, the electric
field intensity, and the current density. From these we would have to apply Poisson’s
equation, the continuity equation, and some relationship expressing the forces on
the charged particles, such as the Lorentz force equation or the diffusion equation,
and solve the whole system of equations simultaneously. Such an ordeal is beyond
the scope of this text, and we will therefore assume a reasonably large amount of
information.

As an example, let us select a pn junction between two halves of a semiconductor
bar extending in the x direction. We will assume that the region for x < 0 is doped p
type and that the region for x > 0 is n type. The degree of doping is identical on each
side of the junction. To review some of the facts about the semiconductor junction,
we note that initially there are excess holes to the left of the junction and excess
electrons to the right. Each diffuses across the junction until an electric field is built
up in such a direction that the diffusion current drops to zero. Thus, to prevent more
holes from moving to the right, the electric field in the neighborhood of the junction
must be directed to the left; E, is negative there. This field must be produced by a net
positive charge to the right of the junction and a net negative charge to the left. Note
that the layer of positive charge consists of two parts—the holes which have crossed
the junction and the positive donor ions from which the electrons have departed.
The negative layer of charge is constituted in the opposite manner by electrons and
negative acceptor ions.

The type of charge distribution that results is shown in Figure 6.12a, and the
negative field which it produces is shown in Figure 6.12b. After looking at these two
figures, one might profitably read the previous paragraph again.

A charge distribution of this form may be approximated by many different
expressions. One of the simpler expressions is

X X
Py = 20,0 sech — tanh — 44)
a a

which has a maximum charge density p, ,,.c = pyo that occurs at x = 0.881a. The
maximum charge density p, is related to the acceptor and donor concentrations N,
and N, by noting that all the donor and acceptor ions in this region (the depletion
layer) have been stripped of an electron or a hole, and thus

Pvo = eNy = eNy

We now solve Poisson’s equation,
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Py

Puo

xla

xla
LVO xla
2p v0 a2

(©

Figure 6.12 (a) The charge density, (b) the electric field intensity, and
(c) the potential are plotted for a pn junction as functions of distance from
the center of the junction. The p-type material is on the left, and the n-type
is on the right.
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subject to the charge distribution assumed above,

da*v 2 X X
Cr _ _P0ech? tanh T
dx? € a a
in this one-dimensional problem in which variations with y and z are not present. We

integrate once,
dv B 20000
dx €
and obtain the electric field intensity,

20,00 X
E, =— Pro8 cech” — C
€ a

sechf + C,
a

To evaluate the constant of integration C, we note that no net charge density and no
fields can exist far from the junction. Thus, as x — =00, E, must approach zero.
Therefore C; = 0, and

20,00 X
E, = _ 2P0l o en (45)
€ a
Integrating again,
4p,0a
V = T tan~! e/ 4+ C,
€

Let us arbitrarily select our zero reference of potential at the center of the junction,
x =0,
4p,0a®

0= —+C
c 4+2

and finally,

4p,0a?
v = 20 (anterla - T (46)
€ 4

Figure 6.12 shows the charge distribution (a), electric field intensity (b), and the
potential (c), as given by Eqs. (44), (45), and (46), respectively.

The potential is constant once we are a distance of about 4a or 5a from the
junction. The total potential difference V; across the junction is obtained from Eq. (46),

o 27'[:0\20“2

Vo=Vicowo = Vi o= a7

€
This expression suggests the possibility of determining the total charge on one side of
the junction and then using Eq. (47) to find a junction capacitance. The total positive
charge is

o X x
0= S/ 2py08ech— tanh — dx = 2p,0a$
0 a a

where S is the area of the junction cross section. If we make use of Eq. (47) to eliminate
the distance parameter a, the charge becomes

0= S,/@ (48)
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Because the total charge is a function of the potential difference, we have to be careful
in defining a capacitance. Thinking in “circuit” terms for a moment,

d dVy
_4Q _ c—

I =
dt dt

and thus
d
c=42
dVy
By differentiating Eq. (48), we therefore have the capacitance

. s
c= [P0 & (49)
27V 2ma

The first form of Eq. (49) shows that the capacitance varies inversely as the square
root of the voltage. That is, a higher voltage causes a greater separation of the charge
layers and a smaller capacitance. The second form is interesting in that it indicates
that we may think of the junction as a parallel-plate capacitor with a “plate” separation
of 2mra. In view of the dimensions of the region in which the charge is concentrated,
this is a logical result.

Poisson’s equation enters into any problem involving volume charge density.
Besides semiconductor diode and transistor models, we find that vacuum tubes, mag-
netohydrodynamic energy conversion, and ion propulsion require its use in construct-
ing satisfactory theories.

D6.7. In the neighborhood of a certain semiconductor junction, the volume
charge density is given by p, = 750 sech 10°zx tanh 10°7x C/m3. The di-
electric constant of the semiconductor material is 10 and the junction area is
2 x 1077 m?. Find: (a) Vp; (b) C: (c) E at the junction.

Ans. 2.70 V; 8.85 pF; 2.70 MV/m
D6.8. Given the volume charge density p, = —2 x 107€y/x C/m? in free

space,let V. =0atx =0andlet V =2V atx = 2.5 mm. At x = | mm, find:
(@) V; (b) E,.

Ans. 0302 V; —555 V/m
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CHAPTER 6 PROBLEMS @
| Quizzes |

6.1% Consider a coaxial capacitor having inner radius a, outer radius b, unit
length, and filled with a material with dielectric constant, €,. Compare this to
a parallel-plate capacitor having plate width w, plate separation d, filled with
the same dielectric, and having unit length. Express the ratio b/a in terms of
the ratio d /w, such that the two structures will store the same energy for a
given applied voltage.

621 LetS=100 mm?, d = 3 mm, and €, = 12 for a parallel-plate capacitor.
(a) Calculate the capacitance. (b) After connecting a 6-V battery across the
capacitor, calculate E, D, Q, and the total stored electrostatic energy.

(c) With the source still connected, the dielectric is carefully withdrawn
from between the plates. With the dielectric gone, recalculate E, D, Q, and
the energy stored in the capacitor. (d) If the charge and energy found in
part (c¢) are less than the values found in part (») (which you should have
discovered), what became of the missing charge and energy?

631 Capacitors tend to be more expensive as their capacitance and
maximum voltage Vi« increase. The voltage V},, is limited by the field
strength at which the dielectric breaks down, Epp. Which of these dielectrics
will give the largest CVyx product for equal plate areas? (a) Air: €, = 1,
Egp = 3 MV/m. (b) Barium titanate: ¢, = 1200, Egp = 3 MV/m. (¢) Silicon
dioxide: €, = 3.78, Egp = 16 MV/m. (d) Polyethylene: €, = 2.26, Egp =
4.7 MV/m.

644 Anair-filled parallel-plate capacitor with plate separation d and plate
area A is connected to a battery that applies a voltage V; between
plates. With the battery left connected, the plates are moved apart to a
distance of 10d. Determine by what factor each of the following
quantities changes: (a) Vy; (b) C; (c) E; (d) D; (e) Q; (f) ps; (g) WE.

651 A parallel-plate capacitor is filled with a nonuniform dielectric characterized
by €, =2 + 2 x 10%x2, where x is the distance from one plate in meters.
If S =0.02m? and d = 1 mm, find C.

6.61 Repeat Problem 6.4, assuming the battery is disconnected before the plate
separation is increased.

6.7i Lete,y =2.5for0 <y < 1mm,¢,, =4forl <y < 3 mm, and €,3 for
3 < y < 5 mm (region 3). Conducting surfaces are present at y = 0 and
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y = 5 mm. Calculate the capacitance per square meter of surface area
if (a) region 3 is air; (b) €,3 = €,1; (¢) €,3 = €,2; (d) region 3 is silver.

685 A parallel-plate capacitor is made using two circular plates of radius a, with
the bottom plate on the xy plane, centered at the origin. The top plate is
located at z = d, with its center on the z axis. Potential Vj is on the top plate;
the bottom plate is grounded. Dielectric having radially dependent
permittivity fills the region between plates. The permittivity is given by
€(p) = eo(1 + p*/a*). Find (a) E; (b) D; (¢) Q; (d) C.

6.9. Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length
of 1 m. The region between the cylinders contains a layer of dielectric from
p = cto p =d with ¢, = 4. Find the capacitance if (@) c =2 cm, d = 3 cm;
(b) d = 4 cm, and the volume of the dielectric is the same as in part (a).

6.10 § A coaxial cable has conductor dimensions of ¢ = 1.0 mm and b = 2.7 mm.
The inner conductor is supported by dielectric spacers (€, = 5) in the
form of washers with a hole radius of 1 mm and an outer radius of 2.7 mm,
and with a thickness of 3.0 mm. The spacers are located every 2 cm down
the cable. (a) By what factor do the spacers increase the capacitance per
unit length? (b) If 100 V is maintained across the cable, find E at all points.

6.111 Two conducting spherical shells have radii ¢ = 3 cm and b = 6 cm. The
interior is a perfect dielectric for which €, = 8. (a) Find C. (b) A portion of
the dielectric is now removed so thate, = 1.0,0 < ¢ < 7/2,and €, = 8,
m/2 < ¢ < 2m. Again find C.

6.121 (a) Determine the capacitance of an isolated conducting sphere of radius a in
free space (consider an outer conductor existing at »r — 00). (b) The sphere is
to be covered with a dielectric layer of thickness d and dielectric contant €,.. If
€, = 3, find d in terms of a such that the capacitance is twice that of part (a).

6.13H With reference to Figure 6.5, let b = 6 m, h = 15 m, and the conductor
potential be 250 V. Take € = ¢(. Find values for Ky, p;, a, and C.

6.141 Two #16 copper conductors (1.29 mm diameter) are parallel with a separation
d between axes. Determine d so that the capacitance between wires in air
is 30 pF/m.

6.151 A 2-cm-diameter conductor is suspended in air with its axis 5 cm from a
conducting plane. Let the potential of the cylinder be 100 V and that of the
plane be 0 V. (a) Find the surface charge density on the cylinder at a point
nearest the plane. (b) Plane at a point nearest the cylinder; (¢) find
the capacitance per unit length.

6.16 § Consider an arrangement of two isolated conducting
surfaces of any shape that form a capacitor. Use the definitions of capacitance
(Eq. (2) in this chapter) and resistance (Eq. (14) in Chapter 5) to show
that when the region between the conductors is filled with either conductive
material (conductivity o) or a perfect dielectric (permittivity €), the resulting



