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interface, and they must be equal. Then we may find in succession D1, D2, ρS1, ρS2,

and Q, obtaining a capacitance

C =
ε1S1 + ε2S2

d
= C1 + C2 (10)

as we should expect.

At this time we can do very little with a capacitor in which two dielectrics

are used in such a way that the interface is not everywhere normal or parallel to

the fields. Certainly we know the boundary conditions at each conductor and at the

dielectric interface; however, we do not know the fields to which to apply the boundary

conditions. Such a problem must be put aside until our knowledge of field theory has

increased and we are willing and able to use more advanced mathematical techniques.

D6.2. Determine the capacitance of: (a) a 1-ft length of 35B/U coaxial cable,

which has an inner conductor 0.1045 in. in diameter, a polyethylene dielectric

(εr = 2.26 from Table C.1), and an outer conductor that has an inner diameter of

0.680 in.; (b) a conducting sphere of radius 2.5 mm, covered with a polyethylene

layer 2 mm thick, surrounded by a conducting sphere of radius 4.5 mm; (c) two

rectangular conducting plates, 1 cm by 4 cm, with negligible thickness, between

which are three sheets of dielectric, each 1 cm by 4 cm, and 0.1 mm thick, having

dielectric constants of 1.5, 2.5, and 6.

Ans. 20.5 pF; 1.41 pF; 28.7 pF

6.4 CAPACITANCE OF A TWO-WIRE LINE

We next consider the problem of the two-wire line. The configuration consists of two

parallel conducting cylinders, each of circular cross section, and we will find complete

information about the electric field intensity, the potential field, the surface-charge-

density distribution, and the capacitance. This arrangement is an important type of

transmission line, as is the coaxial cable.

We begin by investigating the potential field of two infinite line charges. Figure 6.4

shows a positive line charge in the xz plane at x = a and a negative line charge at

x = −a. The potential of a single line charge with zero reference at a radius of R0 is

V =
ρL

2πε
ln

R0

R

We now write the expression for the combined potential field in terms of the radial

distances from the positive and negative lines, R1 and R2, respectively,

V =
ρL

2πε

(

ln
R10

R1

− ln
R20

R2

)

=
ρL

2πε
ln

R10 R2

R20 R1
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(−a, 0, 0)

−rL +rLz

(a, 0, 0)

P(x, y, 0)

2a

R2

R1

y

x

Figure 6.4 Two parallel infinite line charges carrying opposite

charge. The positive line is at x = a, y = 0, and the negative line

is at x = −a, y = 0. A general point P(x, y, 0) in the xy plane is

radially distant R1 and R2 from the positive and negative lines,

respectively. The equipotential surfaces are circular cylinders.

We choose R10 = R20, thus placing the zero reference at equal distances from each

line. This surface is the x = 0 plane. Expressing R1 and R2 in terms of x and y,

V =
ρL

2πε
ln

√

(x + a)2 + y2

(x − a)2 + y2
=

ρL

4πε
ln

(x + a)2 + y2

(x − a)2 + y2
(11)

In order to recognize the equipotential surfaces and adequately understand the

problem we are going to solve, some algebraic manipulations are necessary. Choosing

an equipotential surface V = V1, we define K1 as a dimensionless parameter that is

a function of the potential V1,

K1 = e4πεV1/ρL (12)

so that

K1 =
(x + a)2 + y2

(x − a)2 + y2

After multiplying and collecting like powers, we obtain

x2 − 2ax
K1 + 1

K1 − 1
+ y2 + a2 = 0

We next work through a couple of lines of algebra and complete the square,

(

x − a
K1 + 1

K1 − 1

)2

+ y2 =
(

2a
√

K1

K1 − 1

)2

This shows that the V = V1 equipotential surface is independent of z (or is a cylinder)

and intersects the xy plane in a circle of radius b,

b =
2a

√
K1

K1 − 1
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which is centered at x = h, y = 0, where

h = a
K1 + 1

K1 − 1

Now let us attack a physical problem by considering a zero-potential conducting

plane located at x = 0, and a conducting cylinder of radius b and potential V0 with

its axis located a distance h from the plane. We solve the last two equations for a and

K1 in terms of the dimensions b and h,

a =
√

h2 − b2 (13)

and

√

K1 =
h +

√
h2 − b2

b
(14)

But the potential of the cylinder is V0, so Eq. (12) leads to
√

K1 = e2πεV0/ρL

Therefore,

ρL =
4πεV0

lnK1

(15)

Thus, given h, b, and V0, we may determine a, ρL , and the parameter K1. The

capacitance between the cylinder and plane is now available. For a length L in the z

direction, we have

C =
ρL L

V0

=
4πεL

lnK1

=
2πεL

ln
√

K1

or

C =
2πεL

ln[(h +
√

h2 − b2)/b]
=

2πεL

cosh−1(h/b)
(16)

The solid line in Figure 6.5 shows the cross section of a cylinder of 5 m radius

at a potential of 100 V in free space, with its axis 13 m distant from a plane at zero

potential. Thus, b = 5, h = 13, V0 = 100, and we rapidly find the location of the

equivalent line charge from Eq. (13),

a =
√

h2 − b2 =
√

132 − 52 = 12 m

the value of the potential parameter K1 from Eq. (14),

√

K1 =
h +

√
h2 − b2

b
=

13 + 12

5
= 5 K1 = 25

the strength of the equivalent line charge from Eq. (15),

ρL =
4πεV0

lnK1

=
4π × 8.854 × 10−12 × 100

ln 25
= 3.46 nC/m

and the capacitance between cylinder and plane from Eq. (16),

C =
2πε

cosh−1(h/b)
=

2π × 8.854 × 10−12

cosh−1(13/5)
= 34.6 pF/m
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y

x

V = 0

h = 13
b = 5

Equivalent

line charge

Center, x = 13,

y = 0, V = 100

Center, x = 18, y = 0

radius = 13.42

V = 50

Figure 6.5 A numerical example of the

capacitance, linear charge density, position of an

equivalent line charge, and characteristics of the

mid-equipotential surface for a cylindrical

conductor of 5 m radius at a potential of 100 V,

parallel to and 13 m from a conducting plane at

zero potential.

We may also identify the cylinder representing the 50 V equipotential surface by

finding new values for K1, h, and b. We first use Eq. (12) to obtain

K1 = e4πεV1/ρL = e4π×8.854×10−12×50/3.46×10−9 = 5.00

Then the new radius is

b =
2a

√
K1

K1 − 1
=

2 × 12
√

5

5 − 1
= 13.42 m

and the corresponding value of h becomes

h = a
K1 + 1

K1 − 1
= 12

5 + 1

5 − 1
= 18 m

This cylinder is shown in color in Figure 6.5.

The electric field intensity can be found by taking the gradient of the potential

field, as given by Eq. (11),

E = −∇
[

ρL

4πε
ln

(x + a)2 + y2

(x − a)2 + y2

]

Thus,

E = −
ρL

4πε

[

2(x + a)ax + 2yay

(x + a)2 + y2
−

2(x − a)ax + 2yay

(x − a)2 + y2

]

and

D = εE = −
ρL

2π

[

(x + a)ax + yay

(x + a)2 + y2
−

(x − a)ax + yay

(x − a)2 + y2

]
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If we evaluate Dx at x = h − b, y = 0, we may obtain ρS,max

ρS,max = −Dx,x=h−b,y=0 =
ρL

2π

[

h − b + a

(h − b + a)2
−

h − b − a

(h − b − a)2

]

For our example,

ρS,max =
3.46 × 10−9

2π

[

13 − 5 + 12

(13 − 5 + 12)2
−

13 − 5 − 12

(13 − 5 − 12)2

]

= 0.165 nC/m2

Similarly, ρS,min = Dx,x=h+b,y=0, and

ρS,min =
3.46 × 10−9

2π

[

13 + 5 + 12

302
−

13 + 5 − 12

62

]

= 0.073 nC/m2

Thus,

ρS,max = 2.25ρS,min

If we apply Eq. (16) to the case of a conductor for which b � h, then

ln
[(

h +
√

h2 − b2
)

/b
]

=̇ ln[(h + h)/b] =̇ ln(2h/b)

and

C =
2πεL

ln(2h/b)
(b � h) (17)

The capacitance between two circular conductors separated by a distance 2h

is one-half the capacitance given by Eqs. (16) or (17). This last answer is of inter-

est because it gives us an expression for the capacitance of a section of two-wire

transmission line, one of the types of transmission lines studied later in Chapter 13.

D6.3. A conducting cylinder with a radius of 1 cm and at a potential of 20 V is

parallel to a conducting plane which is at zero potential. The plane is 5 cm distant

from the cylinder axis. If the conductors are embedded in a perfect dielectric

for which εr = 4.5, find: (a) the capacitance per unit length between cylinder

and plane; (b) ρS,max on the cylinder.

Ans. 109.2 pF/m; 42.6 nC/m2

6.5 USING FIELD SKETCHES TO ESTIMATE
CAPACITANCE IN TWO-DIMENSIONAL
PROBLEMS

In capacitance problems in which the conductor configurations cannot be easily de-

scribed using a single coordinate system, other analysis techniques are usually applied.

Such methods typically involve a numerical determination of field or potential values

over a grid within the region of interest. In this section, another approach is described

that involves making sketches of field lines and equipotential surfaces in a manner

that follows a few simple rules. This approach, although lacking the accuracy of more
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elegant methods, allows fairly quick estimates of capacitance while providing a useful

visualization of the field configuration.

The method, requiring only pencil and paper, is capable of yielding good accu-

racy if used skillfully and patiently. Fair accuracy (5 to 10 percent on a capacitance

determination) may be obtained by a beginner who does no more than follow the

few rules and hints of the art. The method to be described is applicable only to fields

in which no variation exists in the direction normal to the plane of the sketch. The

procedure is based on several facts that we have already demonstrated:

1. A conductor boundary is an equipotential surface.

2. The electric field intensity and electric flux density are both perpendicular to the

equipotential surfaces.

3. E and D are therefore perpendicular to the conductor boundaries and possess

zero tangential values.

4. The lines of electric flux, or streamlines, begin and terminate on charge and

hence, in a charge-free, homogeneous dielectric, begin and terminate only on

the conductor boundaries.

We consider the implications of these statements by drawing the streamlines on

a sketch that already shows the equipotential surfaces. In Figure 6.6a, two conductor

boundaries are shown, and equipotentials are drawn with a constant potential differ-

ence between lines. We should remember that these lines are only the cross sections

of the equipotential surfaces, which are cylinders (although not circular). No variation

in the direction normal to the surface of the paper is permitted. We arbitrarily choose

to begin a streamline, or flux line, at A on the surface of the more positive conductor.

It leaves the surface normally and must cross at right angles the undrawn but very

real equipotential surfaces between the conductor and the first surface shown. The

line is continued to the other conductor, obeying the single rule that the intersection

with each equipotential must be square.

In a similar manner, we may start at B and sketch another streamline ending

at B ′. We need to understand the meaning of this pair of streamlines. The streamline,

Figure 6.6 (a) Sketch of the equipotential surfaces between two conductors. The

increment of potential between each of the two adjacent equipotentials is the same.

(b) One flux line has been drawn from A to A′, and a second from B to B′.
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by definition, is everywhere tangent to the electric field intensity or to the electric flux

density. Because the streamline is tangent to the electric flux density, the flux density

is tangent to the streamline, and no electric flux may cross any streamline. In other

words, if there is a charge of 5 µC on the surface between A and B (and extending

1 m into the paper), then 5 µC of flux begins in this region, and all must terminate

between A′ and B ′. Such a pair of lines is sometimes called a flux tube, because it

physically seems to carry flux from one conductor to another without losing any.

We next construct a third streamline, and both the mathematical and visual in-

terpretations we may make from the sketch will be greatly simplified if we draw this

line starting from some point C chosen so that the same amount of flux is carried in

the tube BC as is contained in AB. How do we choose the position of C?

The electric field intensity at the midpoint of the line joining A to B may be

found approximately by assuming a value for the flux in the tube AB, say ��, which

allows us to express the electric flux density by ��/�L t , where the depth of the tube

into the paper is 1 m and �L t is the length of the line joining A to B. The magnitude

of E is then

E =
1

ε

��

�L t

We may also find the magnitude of the electric field intensity by dividing the

potential difference between points A and A1, lying on two adjacent equipotential

surfaces, by the distance from A to A1. If this distance is designated �L N and an

increment of potential between equipotentials of �V is assumed, then

E =
�V

�L N

This value applies most accurately to the point at the middle of the line segment

from A to A1, while the previous value was most accurate at the midpoint of the line

segment from A to B. If, however, the equipotentials are close together (�V small)

and the two streamlines are close together (�� small), the two values found for the

electric field intensity must be approximately equal,

1

ε

��

�L t

=
�V

�L N

(18)

Throughout our sketch we have assumed a homogeneous medium (ε constant), a

constant increment of potential between equipotentials (�V constant), and a constant

amount of flux per tube (�� constant). To satisfy all these conditions, Eq. (18) shows

that

�L t

�L N

= constant =
1

ε

��

�V
(19)

A similar argument might be made at any point in our sketch, and we are therefore

led to the conclusion that a constant ratio must be maintained between the distance

between streamlines as measured along an equipotential, and the distance between

equipotentials as measured along a streamline. It is this ratio that must have the same

value at every point, not the individual lengths. Each length must decrease in regions

of greater field strength, because �V is constant.
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Figure 6.7 The remaining of the

streamlines have been added to

Fig. 6.6b by beginning each new line

normally to the conductor and

maintaining curvilinear squares

throughout the sketch.

The simplest ratio we can use is unity, and the streamline from B to B ′ shown in

Figure 6.6b was started at a point for which �L t = �L N . Because the ratio of these

distances is kept at unity, the streamlines and equipotentials divide the field-containing

region into curvilinear squares, a term implying a planar geometric figure that differs

from a true square in having slightly curved and slightly unequal sides but which

approaches a square as its dimensions decrease. Those incremental surface elements

in our three coordinate systems which are planar may also be drawn as curvilinear

squares.

We may now sketch in the remainder of the streamlines by keeping each small

box as square as possible. One streamline is begun, an equipotential line is roughed

in, another streamline is added, forming a curvilinear square, and the map is gradually

extended throughout the desired region. The complete sketch is shown in Figure 6.7.

The construction of a useful field map is an art; the science merely furnishes

the rules. Proficiency in any art requires practice. A good problem for beginners is

the coaxial cable or coaxial capacitor, since all the equipotentials are circles while the

flux lines are straight lines. The next sketch attempted should be two parallel circular

conductors, where the equipotentials are again circles but with different centers. Each

of these is given as a problem at the end of the chapter.

Figure 6.8 shows a completed map for a cable containing a square inner conductor

surrounded by a circular conductor. The capacitance is found from C = Q/V0 by

replacing Q by NQ�Q = NQ��, where NQ is the number of flux tubes joining

the two conductors, and letting V0 = NV �V, where NV is the number of potential

increments between conductors,

C =
NQ�Q

NV �V

and then using Eq. (19),

C =
NQ

NV

ε
�L t

�L N

= ε
NQ

NV

(20)
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Figure 6.8 An example of a curvilinear-square

field map. The side of the square is two-thirds the

radius of the circle. NV = 4 and NQ = 8 × 3.25

× 26, and therefore C = ε0 NQ/NV = 57.6 pF/m.

since �L t/�L N = 1. The determination of the capacitance from a flux plot merely

consists of counting squares in two directions, between conductors and around either

conductor. From Figure 6.8 we obtain

C = ε0

8 × 3.25

4
= 57.6 pF/m

Ramo, Whinnery, and Van Duzer have an excellent discussion with examples

of the construction of field maps by curvilinear squares. They offer the following

suggestions:1

1. Plan on making a number of rough sketches, taking only a minute or so apiece,

before starting any plot to be made with care. The use of transparent paper over

the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between electrodes into an equal number

of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentials in the region where the field is known best,

for example, in some region where it approaches a uniform field. Extend the

equipotentials according to your best guess throughout the plot. Note that they

should tend to hug acute angles of the conducting boundary and be spread out

in the vicinity of obtuse angles of the boundary.

1 By permission from S. Ramo, J. R. Whinnery, and T. Van Duzer, pp. 51–52. See References at the end

of this chapter. Curvilinear maps are discussed on pp. 50–52.
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4. Draw in the orthogonal set of field lines. As these are started, they should form

curvilinear squares, but, as they are extended, the condition of orthogonality

should be kept paramount, even though this will result in some rectangles with

ratios other than unity.

5. Look at the regions with poor side ratios and try to see what was wrong with the

first guess of equipotentials. Correct them and repeat the procedure until

reasonable curvilinear squares exist throughout the plot.

6. In regions of low field intensity, there will be large figures, often of five or six

sides. To judge the correctness of the plot in this region, these large units should

be subdivided. The subdivisions should be started back away from the region

needing subdivision, and each time a flux tube is divided in half, the potential

divisions in this region must be divided by the same factor.

D6.4. Figure 6.9 shows the cross section of two circular cylinders at potentials

of 0 and 60 V. The axes are parallel and the region between the cylinders is air-

filled. Equipotentials at 20 V and 40 V are also shown. Prepare a curvilinear-

square map on the figure and use it to establish suitable values for: (a) the

capacitance per meter length; (b) E at the left side of the 60 V conductor if its

true radius is 2 mm; (c) ρS at that point.

Ans. 69 pF/m; 60 kV/m; 550 nC/m2

Figure 6.9 See Problem D6.4.
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6.6 POISSON’S AND LAPLACE’S EQUATIONS

In preceding sections, we have found capacitance by first assuming a known charge

distribution on the conductors and then finding the potential difference in terms of

the assumed charge. An alternate approach would be to start with known potentials

on each conductor, and then work backward to find the charge in terms of the known

potential difference. The capacitance in either case is found by the ratio Q/V .

The first objective in the latter approach is thus to find the potential function

between conductors, given values of potential on the boundaries, along with possible

volume charge densities in the region of interest. The mathematical tools that enable

this to happen are Poisson’s and Laplace’s equations, to be explored in the remainder

of this chapter. Problems involving one to three dimensions can be solved either ana-

lytically or numerically. Laplace’s and Poisson’s equations, when compared to other

methods, are probably the most widely useful because many problems in engineering

practice involve devices in which applied potential differences are known, and in

which constant potentials occur at the boundaries.

Obtaining Poisson’s equation is exceedingly simple, for from the point form of

Gauss’s law,

∇ · D = ρν (21)

the definition of D,

D = εE (22)

and the gradient relationship,

E = −∇V (23)

by substitution we have

∇ · D = ∇ · (εE) = −∇ · (ε∇V ) = ρν

or

∇ · ∇V = −
ρν

ε
(24)

for a homogeneous region in which ε is constant.

Equation (24) is Poisson’s equation, but the “double ∇” operation must be inter-

preted and expanded, at least in rectangular coordinates, before the equation can be

useful. In rectangular coordinates,

∇ · A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

∇V =
∂V

∂x
ax +

∂V

∂y
ay +

∂V

∂z
az
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and therefore

∇ · ∇V =
∂

∂x

(

∂V

∂x

)

+
∂

∂y

(

∂V

∂y

)

+
∂

∂z

(

∂V

∂z

)

=
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
(25)

Usually the operation ∇ · ∇ is abbreviated ∇2 (and pronounced “del squared”), a good

reminder of the second-order partial derivatives appearing in Eq. (5), and we have

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= −

ρν

ε
(26)

in rectangular coordinates.

If ρν = 0, indicating zero volume charge density, but allowing point charges,

line charge, and surface charge density to exist at singular locations as sources of the

field, then

∇2V = 0 (27)

which is Laplace’s equation. The ∇2 operation is called the Laplacian of V.

In rectangular coordinates Laplace’s equation is

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0 (rectangular) (28)

and the form of ∇2V in cylindrical and spherical coordinates may be obtained by using

the expressions for the divergence and gradient already obtained in those coordinate

systems. For reference, the Laplacian in cylindrical coordinates is

∇2V =
1

ρ

∂

∂ρ

(

ρ
∂V

∂ρ

)

+
1

ρ2

(

∂2V

∂φ2

)

+
∂2V

∂z2
(cylindrical) (29)

and in spherical coordinates is

∇2V =
1

r2

∂

∂r

(

r2 ∂V

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

+
1

r2 sin2 θ

∂2V

∂φ2
(spherical)

(30)

These equations may be expanded by taking the indicated partial derivatives, but it is

usually more helpful to have them in the forms just given; furthermore, it is much easier

to expand them later if necessary than it is to put the broken pieces back together again.

Laplace’s equation is all-embracing, for, applying as it does wherever volume

charge density is zero, it states that every conceivable configuration of electrodes
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or conductors produces a field for which ∇2V = 0. All these fields are different,

with different potential values and different spatial rates of change, yet for each

of them ∇2V = 0. Because every field (if ρν = 0) satisfies Laplace’s equation,

how can we expect to reverse the procedure and use Laplace’s equation to find one

specific field in which we happen to have an interest? Obviously, more information is

required, and we shall find that we must solve Laplace’s equation subject to certain

boundary conditions.

Every physical problem must contain at least one conducting boundary and usu-

ally contains two or more. The potentials on these boundaries are assigned values,

perhaps V0, V1, . . . , or perhaps numerical values. These definite equipotential sur-

faces will provide the boundary conditions for the type of problem to be solved. In

other types of problems, the boundary conditions take the form of specified values of

E (alternatively, a surface charge density, ρS) on an enclosing surface, or a mixture

of known values of V and E .

Before using Laplace’s equation or Poisson’s equation in several examples, we

must state that if our answer satisfies Laplace’s equation and also satisfies the boundary

conditions, then it is the only possible answer. This is a statement of the Uniqueness

Theorem, the proof of which is presented in Appendix D.

D6.5. Calculate numerical values for V and ρν at point P in free space if:

(a) V =
4yz

x2 + 1
, at P(1, 2, 3); (b) V = 5ρ2 cos 2φ, at P(ρ = 3, φ =

π

3
,

z = 2); (c) V =
2 cos φ

r2
, at P(r = 0.5, θ = 45◦, φ = 60◦).

Ans. 12 V, −106.2 pC/m3; −22.5 V, 0; 4 V, 0

6.7 EXAMPLES OF THE SOLUTION
OF LAPLACE’S EQUATION

Several methods have been developed for solving Laplace’s equation. The simplest

method is that of direct integration. We will use this technique to work several exam-

ples involving one-dimensional potential variation in various coordinate systems in

this section.

The method of direct integration is applicable only to problems that are “one-

dimensional,” or in which the potential field is a function of only one of the three

coordinates. Since we are working with only three coordinate systems, it might seem,

then, that there are nine problems to be solved, but a little reflection will show that

a field that varies only with x is fundamentally the same as a field that varies only

with y. Rotating the physical problem a quarter turn is no change. Actually, there are

only five problems to be solved, one in rectangular coordinates, two in cylindrical,

and two in spherical. We will solve them all.

First, let us assume that V is a function only of x and worry later about which

physical problem we are solving when we have a need for boundary conditions.

Laplace’s equation reduces to

∂2V

∂x2
= 0
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and the partial derivative may be replaced by an ordinary derivative, since V is not a

function of y or z,

d2V

dx2
= 0

We integrate twice, obtaining

dV

dx
= A

and

V = Ax + B (31)

where A and B are constants of integration. Equation (31) contains two such constants,

as we would expect for a second-order differential equation. These constants can be

determined only from the boundary conditions.

Since the field varies only with x and is not a function of y and z, then V is a

constant if x is a constant or, in other words, the equipotential surfaces are parallel

planes normal to the x axis. The field is thus that of a parallel-plate capacitor, and as

soon as we specify the potential on any two planes, we may evaluate our constants of

integration.

EXAMPLE 6.2

Start with the potential function, Eq. (31), and find the capacitance of a parallel-plate

capacitor of plate area S, plate separation d , and potential difference V0 between

plates.

Solution. Take V = 0 at x = 0 and V = V0 at x = d . Then from Eq. (31),

A =
V0

d
B = 0

and

V =
V0x

d
(32)

We still need the total charge on either plate before the capacitance can be found.

We should remember that when we first solved this capacitor problem, the sheet of

charge provided our starting point. We did not have to work very hard to find the

charge, for all the fields were expressed in terms of it. The work then was spent in

finding potential difference. Now the problem is reversed (and simplified).

The necessary steps are these, after the choice of boundary conditions has been

made:

1. Given V, use E = −∇V to find E.

2. Use D = εE to find D.

3. Evaluate D at either capacitor plate, D = DS = DN aN.

4. Recognize that ρS = DN.

5. Find Q by a surface integration over the capacitor plate, Q =
∫

S
ρS dS.
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Here we have

V = V0

x

d

E = −
V0

d
ax

D = −ε
V0

d
ax

DS = D
∣

∣

x=0
= −ε

V0

d
ax

aN = ax

DN = −ε
V0

d
= ρS

Q =
∫

S

−εV0

d
dS = −ε

V0S

d

and the capacitance is

C =
|Q|
V0

=
εS

d
(33)

We will use this procedure several times in the examples to follow.

EXAMPLE 6.3

Because no new problems are solved by choosing fields which vary only with y or

with z in rectangular coordinates, we pass on to cylindrical coordinates for our next

example. Variations with respect to z are again nothing new, and we next assume

variation with respect to ρ only. Laplace’s equation becomes

1

ρ

∂

∂ρ

(

ρ
∂V

∂ρ

)

= 0

Noting the ρ in the denominator, we exclude ρ = 0 from our solution and then

multiply by ρ and integrate,

ρ
dV

dρ
= A

where a total derivative replaces the partial derivative because V varies only with ρ.

Next, rearrange, and integrate again,

V = A ln ρ + B (34)

The equipotential surfaces are given by ρ = constant and are cylinders, and the

problem is that of the coaxial capacitor or coaxial transmission line. We choose a
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potential difference of V0 by letting V = V0 at ρ = a, V = 0 at ρ = b, b > a, and

obtain

V = V0

ln(b/ρ)

ln(b/a)
(35)

from which

E =
V0

ρ

1

ln(b/a)
aρ

DN (ρ=a) =
εV0

a ln(b/a)

Q =
εV02πaL

a ln(b/a)

C =
2πεL

ln(b/a)
(36)

which agrees with our result in Section 6.3 (Eq. (5)).

EXAMPLE 6.4

Now assume that V is a function only of φ in cylindrical coordinates. We might look

at the physical problem first for a change and see that equipotential surfaces are given

by φ = constant. These are radial planes. Boundary conditions might be V = 0 at

φ = 0 and V = V0 at φ = α, leading to the physical problem detailed in Figure 6.10.

Figure 6.10 Two infinite radial planes with an

interior angle α. An infinitesimal insulating gap exists

at ρ = 0. The potential field may be found by applying

Laplace’s equation in cylindrical coordinates.
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Laplace’s equation is now

1

ρ2

∂2V

∂φ2
= 0

We exclude ρ = 0 and have

d2V

dφ2
= 0

The solution is

V = Aφ + B

The boundary conditions determine A and B, and

V = V0

φ

α
(37)

Taking the gradient of Eq. (37) produces the electric field intensity,

E = −
V0aφ

αρ
(38)

and it is interesting to note that E is a function of ρ and not of φ. This does not

contradict our original assumptions, which were restrictions only on the potential

field. Note, however, that the vector field E is in the φ direction.

A problem involving the capacitance of these two radial planes is included at the

end of the chapter.

EXAMPLE 6.5

We now turn to spherical coordinates, dispose immediately of variations with respect

to φ only as having just been solved, and treat first V = V (r ).

The details are left for a problem later, but the final potential field is given by

V = V0

1

r
−

1

b
1

a
−

1

b

(39)

where the boundary conditions are evidently V = 0 at r = b and V = V0 at r = a,

b > a. The problem is that of concentric spheres. The capacitance was found previ-

ously in Section 6.3 (by a somewhat different method) and is

C =
4πε

1

a
−

1

b

(40)
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EXAMPLE 6.6

In spherical coordinates we now restrict the potential function to V = V (θ ), obtaining

1

r2 sin θ

d

dθ

(

sin θ
dV

dθ

)

= 0

We exclude r = 0 and θ = 0 or π and have

sin θ
dV

dθ
= A

The second integral is then

V =
∫

A dθ

sin θ
+ B

which is not as obvious as the previous ones. From integral tables (or a good memory)

we have

V = A ln

(

tan
θ

2

)

+ B (41)

The equipotential surfaces of Eq. (41) are cones. Figure 6.11 illustrates the case

where V = 0 at θ = π/2 and V = V0 at θ = α, α < π/2. We obtain

V = V0

ln

(

tan
θ

2

)

ln

(

tan
α

2

) (42)

Figure 6.11 For the cone θ = α at V0 and the

plane θ = π/2 at V = 0, the potential field is given by

V = V0[ln(tan θ/2)]/[ln(tan α/2)].
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In order to find the capacitance between a conducting cone with its vertex sepa-

rated from a conducting plane by an infinitesimal insulating gap and its axis normal

to the plane, we first find the field strength:

E = −∇V =
−1

r

∂V

∂θ
aθ = −

V0

r sin θ ln

(

tan
α

2

)aθ

The surface charge density on the cone is then

ρS =
−εV0

r sin α ln

(

tan
α

2

)

producing a total charge Q,

Q =
−εV0

sin α ln

(

tan
α

2

)

∫ ∞

0

∫ 2π

0

r sin α dφ dr

r

=
−2πε0V0

ln

(

tan
α

2

)

∫ ∞

0

dr

This leads to an infinite value of charge and capacitance, and it becomes necessary to

consider a cone of finite size. Our answer will now be only an approximation because

the theoretical equipotential surface is θ = α, a conical surface extending from r = 0

to r = ∞, whereas our physical conical surface extends only from r = 0 to, say,

r = r1. The approximate capacitance is

C =̇
2πεr1

ln

(

cot
α

2

) (43)

If we desire a more accurate answer, we may make an estimate of the capacitance

of the base of the cone to the zero-potential plane and add this amount to our answer.

Fringing, or nonuniform, fields in this region have been neglected and introduce an

additional source of error.

D6.6. Find |E| at P(3, 1, 2) in rectangular coordinates for the field of: (a)

two coaxial conducting cylinders, V = 50 V at ρ = 2 m, and V = 20 V

at ρ = 3 m; (b) two radial conducting planes, V = 50 V at φ = 10◦, and

V = 20 V at φ = 30◦.

Ans. 23.4 V/m; 27.2 V/m
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6.8 EXAMPLE OF THE SOLUTION
OF POISSON’S EQUATION: THE P-N
JUNCTION CAPACITANCE

To select a reasonably simple problem that might illustrate the application of Poisson’s

equation, we must assume that the volume charge density is specified. This is not

usually the case, however; in fact, it is often the quantity about which we are seeking

further information. The type of problem which we might encounter later would

begin with a knowledge only of the boundary values of the potential, the electric

field intensity, and the current density. From these we would have to apply Poisson’s

equation, the continuity equation, and some relationship expressing the forces on

the charged particles, such as the Lorentz force equation or the diffusion equation,

and solve the whole system of equations simultaneously. Such an ordeal is beyond

the scope of this text, and we will therefore assume a reasonably large amount of

information.

As an example, let us select a pn junction between two halves of a semiconductor

bar extending in the x direction. We will assume that the region for x < 0 is doped p

type and that the region for x > 0 is n type. The degree of doping is identical on each

side of the junction. To review some of the facts about the semiconductor junction,

we note that initially there are excess holes to the left of the junction and excess

electrons to the right. Each diffuses across the junction until an electric field is built

up in such a direction that the diffusion current drops to zero. Thus, to prevent more

holes from moving to the right, the electric field in the neighborhood of the junction

must be directed to the left; Ex is negative there. This field must be produced by a net

positive charge to the right of the junction and a net negative charge to the left. Note

that the layer of positive charge consists of two parts—the holes which have crossed

the junction and the positive donor ions from which the electrons have departed.

The negative layer of charge is constituted in the opposite manner by electrons and

negative acceptor ions.

The type of charge distribution that results is shown in Figure 6.12a, and the

negative field which it produces is shown in Figure 6.12b. After looking at these two

figures, one might profitably read the previous paragraph again.

A charge distribution of this form may be approximated by many different

expressions. One of the simpler expressions is

ρν = 2ρν0 sech
x

a
tanh

x

a
(44)

which has a maximum charge density ρv,max = ρv0 that occurs at x = 0.881a. The

maximum charge density ρv0 is related to the acceptor and donor concentrations Na

and Nd by noting that all the donor and acceptor ions in this region (the depletion

layer) have been stripped of an electron or a hole, and thus

ρv0 = eNa = eNd

We now solve Poisson’s equation,

∇2V = −
ρν

ε
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Figure 6.12 (a) The charge density, (b) the electric field intensity, and

(c) the potential are plotted for a pn junction as functions of distance from

the center of the junction. The p-type material is on the left, and the n-type

is on the right.
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subject to the charge distribution assumed above,

d2V

dx2
= −

2ρv0

ε
sech

x

a
tanh

x

a

in this one-dimensional problem in which variations with y and z are not present. We

integrate once,

dV

dx
=

2ρv0a

ε
sech

x

a
+ C1

and obtain the electric field intensity,

Ex = −
2ρv0a

ε
sech

x

a
− C1

To evaluate the constant of integration C1, we note that no net charge density and no

fields can exist far from the junction. Thus, as x → ±∞, Ex must approach zero.

Therefore C1 = 0, and

Ex = −
2ρv0a

ε
sech

x

a
(45)

Integrating again,

V =
4ρv0a2

ε
tan−1 ex/a + C2

Let us arbitrarily select our zero reference of potential at the center of the junction,

x = 0,

0 =
4ρv0a2

ε

π

4
+ C2

and finally,

V =
4ρv0a2

ε

(

tan−1 ex/a −
π

4

)

(46)

Figure 6.12 shows the charge distribution (a), electric field intensity (b), and the

potential (c), as given by Eqs. (44), (45), and (46), respectively.

The potential is constant once we are a distance of about 4a or 5a from the

junction. The total potential difference V0 across the junction is obtained from Eq. (46),

V0 = Vx→∞ − Vx→−∞ =
2πρv0a2

ε
(47)

This expression suggests the possibility of determining the total charge on one side of

the junction and then using Eq. (47) to find a junction capacitance. The total positive

charge is

Q = S

∫ ∞

0

2ρν0sech
x

a
tanh

x

a
dx = 2ρν0aS

where S is the area of the junction cross section. If we make use of Eq. (47) to eliminate

the distance parameter a, the charge becomes

Q = S

√

2ρν0εV0

π
(48)
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Because the total charge is a function of the potential difference, we have to be careful

in defining a capacitance. Thinking in “circuit” terms for a moment,

I =
d Q

dt
= C

dV0

dt

and thus

C =
d Q

dV0

By differentiating Eq. (48), we therefore have the capacitance

C =
√

ρν0ε

2πV0

S =
εS

2πa
(49)

The first form of Eq. (49) shows that the capacitance varies inversely as the square

root of the voltage. That is, a higher voltage causes a greater separation of the charge

layers and a smaller capacitance. The second form is interesting in that it indicates

that we may think of the junction as a parallel-plate capacitor with a “plate” separation

of 2πa. In view of the dimensions of the region in which the charge is concentrated,

this is a logical result.

Poisson’s equation enters into any problem involving volume charge density.

Besides semiconductor diode and transistor models, we find that vacuum tubes, mag-

netohydrodynamic energy conversion, and ion propulsion require its use in construct-

ing satisfactory theories.

D6.7. In the neighborhood of a certain semiconductor junction, the volume

charge density is given by ρν = 750 sech 106πx tanh 106πx C/m3. The di-

electric constant of the semiconductor material is 10 and the junction area is

2 × 10−7 m2. Find: (a) V0; (b) C ; (c) E at the junction.

Ans. 2.70 V; 8.85 pF; 2.70 MV/m

D6.8. Given the volume charge density ρν = −2 × 107ε0

√
x C/m3 in free

space, let V = 0 at x = 0 and let V = 2 V at x = 2.5 mm. At x = 1 mm, find:

(a) V ; (b) Ex .

Ans. 0.302 V; −555 V/m
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CHAPTER 6 PROBLEMS

6.1 Consider a coaxial capacitor having inner radius a, outer radius b, unit

length, and filled with a material with dielectric constant, εr . Compare this to

a parallel-plate capacitor having plate width w , plate separation d , filled with

the same dielectric, and having unit length. Express the ratio b/a in terms of

the ratio d/w , such that the two structures will store the same energy for a

given applied voltage.

6.2 Let S = 100 mm2, d = 3 mm, and εr = 12 for a parallel-plate capacitor.

(a) Calculate the capacitance. (b) After connecting a 6-V battery across the

capacitor, calculate E , D, Q, and the total stored electrostatic energy.

(c) With the source still connected, the dielectric is carefully withdrawn

from between the plates. With the dielectric gone, recalculate E , D, Q, and

the energy stored in the capacitor. (d) If the charge and energy found in

part (c) are less than the values found in part (b) (which you should have

discovered), what became of the missing charge and energy?

6.3 Capacitors tend to be more expensive as their capacitance and

maximum voltage Vmax increase. The voltage Vmax is limited by the field

strength at which the dielectric breaks down, EBD. Which of these dielectrics

will give the largest CVmax product for equal plate areas? (a) Air: εr = 1,

EBD = 3 MV/m. (b) Barium titanate: εr = 1200, EBD = 3 MV/m. (c) Silicon

dioxide: εr = 3.78, EBD = 16 MV/m. (d) Polyethylene: εr = 2.26, EBD =
4.7 MV/m.

6.4 An air-filled parallel-plate capacitor with plate separation d and plate

area A is connected to a battery that applies a voltage V0 between

plates. With the battery left connected, the plates are moved apart to a

distance of 10d . Determine by what factor each of the following

quantities changes: (a) V0; (b) C ; (c) E ; (d) D; (e) Q; ( f ) ρS; (g) WE .

6.5 A parallel-plate capacitor is filled with a nonuniform dielectric characterized

by εr = 2 + 2 × 106x2, where x is the distance from one plate in meters.

If S = 0.02 m2 and d = 1 mm, find C.

6.6 Repeat Problem 6.4, assuming the battery is disconnected before the plate

separation is increased.

6.7 Let εr1 = 2.5 for 0 < y < 1 mm, εr2 = 4 for 1 < y < 3 mm, and εr3 for

3 < y < 5 mm (region 3). Conducting surfaces are present at y = 0 and
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y = 5 mm. Calculate the capacitance per square meter of surface area

if (a) region 3 is air; (b) εr3 = εr1; (c) εr3 = εr2; (d) region 3 is silver.

6.8 A parallel-plate capacitor is made using two circular plates of radius a, with

the bottom plate on the xy plane, centered at the origin. The top plate is

located at z = d , with its center on the z axis. Potential V0 is on the top plate;

the bottom plate is grounded. Dielectric having radially dependent

permittivity fills the region between plates. The permittivity is given by

ε(ρ) = ε0(1 + ρ2/a2). Find (a) E; (b) D; (c) Q; (d) C .

6.9 Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length

of 1 m. The region between the cylinders contains a layer of dielectric from

ρ = c to ρ = d with εr = 4. Find the capacitance if (a) c = 2 cm, d = 3 cm;

(b) d = 4 cm, and the volume of the dielectric is the same as in part (a).

6.10 A coaxial cable has conductor dimensions of a = 1.0 mm and b = 2.7 mm.

The inner conductor is supported by dielectric spacers (εr = 5) in the

form of washers with a hole radius of 1 mm and an outer radius of 2.7 mm,

and with a thickness of 3.0 mm. The spacers are located every 2 cm down

the cable. (a) By what factor do the spacers increase the capacitance per

unit length? (b) If 100 V is maintained across the cable, find E at all points.

6.11 Two conducting spherical shells have radii a = 3 cm and b = 6 cm. The

interior is a perfect dielectric for which εr = 8. (a) Find C . (b) A portion of

the dielectric is now removed so that εr = 1.0, 0 < φ < π/2, and εr = 8,

π/2 < φ < 2π . Again find C.

6.12 (a) Determine the capacitance of an isolated conducting sphere of radius a in

free space (consider an outer conductor existing at r → ∞). (b) The sphere is

to be covered with a dielectric layer of thickness d and dielectric contant εr . If

εr = 3, find d in terms of a such that the capacitance is twice that of part (a).

6.13 With reference to Figure 6.5, let b = 6 m, h = 15 m, and the conductor

potential be 250 V. Take ε = ε0. Find values for K1, ρL , a, and C.

6.14 Two #16 copper conductors (1.29 mm diameter) are parallel with a separation

d between axes. Determine d so that the capacitance between wires in air

is 30 pF/m.

6.15 A 2-cm-diameter conductor is suspended in air with its axis 5 cm from a

conducting plane. Let the potential of the cylinder be 100 V and that of the

plane be 0 V. (a) Find the surface charge density on the cylinder at a point

nearest the plane. (b) Plane at a point nearest the cylinder; (c) find

the capacitance per unit length.

6.16 Consider an arrangement of two isolated conducting

surfaces of any shape that form a capacitor. Use the definitions of capacitance

(Eq. (2) in this chapter) and resistance (Eq. (14) in Chapter 5) to show

that when the region between the conductors is filled with either conductive

material (conductivity σ ) or a perfect dielectric (permittivity ε), the resulting


