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The dipole moment p will appear again when we discuss dielectric materials.
Since it is equal to the product of the charge and the separation, neither the dipole
moment nor the potential will change as Q increases and d decreases, provided the
product remains constant. The limiting case of a point dipole is achieved when we let
d approach zero and Q approach infinity such that the product p is finite.

Turning our attention to the resultant fields, it is interesting to note that the
potential field is now proportional to the inverse square of the distance, and the
electric field intensity is proportional to the inverse cube of the distance from
the dipole. Each field falls off faster than the corresponding field for the point charge,
but this is no more than we should expect because the opposite charges appear to
be closer together at greater distances and to act more like a single point charge
of zero Coulombs.

Symmetrical arrangements of larger numbers of point charges produce fields
proportional to the inverse of higher and higher powers of . These charge distributions
are called multipoles, and they are used in infinite series to approximate more unwieldy
charge configurations.

D4.9. An electric dipole located at the origin in free space has a moment
p =3a, —2a, +a,nC- m. (a) Find V at P4(2,3,4). (b) Find V atr = 2.5,
0 =30°, ¢ = 40°.

Ans. 023V;197V

D4.10. A dipole of moment p = 6a, nC - m is located at the origin in free
space. (a) Find V at P(r = 4,0 =20°, ¢ = 0°). (b) Find E at P.

Ans. 3.17 V; 1.58a, + 0.29ay V/m

4.8 ENERGY DENSITY IN THE
ELECTROSTATIC FIELD

We have introduced the potential concept by considering the work done, or en-
ergy expended, in moving a point charge around in an electric field, and now we
must tie up the loose ends of that discussion by tracing the energy flow one step
further.

Bringing a positive charge from infinity into the field of another positive charge
requires work, the work being done by the external source moving the charge. Let
us imagine that the external source carries the charge up to a point near the fixed
charge and then holds it there. Energy must be conserved, and the energy expended in
bringing this charge into position now represents potential energy, for if the external
source released its hold on the charge, it would accelerate away from the fixed charge,
acquiring kinetic energy of its own and the capability of doing work.

In order to find the potential energy present in a system of charges, we must find
the work done by an external source in positioning the charges.
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We may start by visualizing an empty universe. Bringing a charge Q| from infinity
to any position requires no work, for there is no field present.> The positioning of
0> at a point in the field of Q| requires an amount of work given by the product of
the charge O, and the potential at that point due to Q;. We represent this potential
as V, 1, where the first subscript indicates the location and the second subscript the
source. That is, V5 ; is the potential at the location of O, due to Q;. Then

Work to position Q, = 0, V>

Similarly, we may express the work required to position each additional charge
in the field of all those already present:

Work to position Q3 = Q3V31 + Q3V32
Work to position Q4 = OuaVa1+ QaVar+ QaVas
and so forth. The total work is obtained by adding each contribution:

Total positioning work = potential energy of field
=Wg=0Q2Vo1+ 03Va1+ 03Vao+ QaVa,

+04Vap+ O4Vaz+--- (39)
Noting the form of a representative term in the preceding equation,
Qi 03
Q3V31 = 03

47?60R13 - Ql 47t60R31

where R|3 and R3; each represent the scalar distance between Q| and Q3, we see that
it might equally well have been written as O V) 3. If each term of the total energy
expression is replaced by its equal, we have

Weg=01Via+ 01Vizg+ QoVoszs+ Q1 Via+ QoVou+ O3Vay+--- (40)

Adding the two energy expressions (39) and (40) gives us a chance to simplify the
result a little:

2Weg = Q1(Vipg+ Vig+ Viga+--)
+ Q2(V2,l + ng3 —+ sz4 + .- )
+03(V31+Vso+Vag+--0)
—I— -

Each sum of potentials in parentheses is the combined potential due to all the charges
except for the charge at the point where this combined potential is being found. In
other words,

Vig+Vig+Vig+--- =V,

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the
point charge in the first place! How much energy is required to bring two half-charges into coincidence
to make a unit charge?
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Vi is the potential at the location of Q; due to the presence of Q,, QO3,... . We
therefore have

m=N
We=3(Q1Vi+ Q:Va+ 0:sVs+--) =1 0,V (41)
m=1

In order to obtain an expression for the energy stored in a region of continuous
charge distribution, each charge is replaced by p,dv, and the summation becomes an
integral,

vol

Equations (41) and (42) allow us to find the total potential energy present in a
system of point charges or distributed volume charge density. Similar expressions
may be easily written in terms of line or surface charge density. Usually we prefer
to use Eq. (42) and let it represent all the various types of charge which may have to
be considered. This may always be done by considering point charges, line charge
density, or surface charge density to be continuous distributions of volume charge
density over very small regions. We will illustrate such a procedure with an example
shortly.

Before we undertake any interpretation of this result, we should consider a few
lines of more difficult vector analysis and obtain an expression equivalent to Eq. (42)
but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first
equation, replace p, by its equal V - D and make use of a vector identity which is true
for any scalar function V and any vector function D,

V.(VD)=V(V-D)+D-(VV) (43)

This may be proved readily by expansion in rectangular coordinates. We then have,
successively,

We = %/ vadv=%/ (V-D)Vdy
vol vol

- %/ [V-(VD)—D-(VV)]dv
vol

Using the divergence theorem from Chapter 3, the first volume integral of the last
equation is changed into a closed surface integral, where the closed surface surrounds
the volume considered. This volume, first appearing in Eq. (42), must contain every
charge, and there can then be no charges outside of the volume. We may therefore
consider the volume as infinite in extent if we wish. We have

Wi = %%(VD)-dS—%/ D-(VV)dv
S vol

The surface integral is equal to zero, for over this closed surface surrounding the
universe we see that V is approaching zero at least as rapidly as 1/r (the charges
look like point charges from there), and D is approaching zero at least as rapidly as
1/r?. The integrand therefore approaches zero at least as rapidly as 1/r3, while the
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differential area of the surface, looking more and more like a portion of a sphere,
is increasing only as r2. Consequently, in the limit as » — oo, the integrand and
the integral both approach zero. Substituting E = —VV in the remaining volume
integral, we have our answer,

we=4 [ D=1 [ ap2ar (44)
vol vol

We may now use this last expression to calculate the energy stored in the elec-
trostatic field of a section of a coaxial cable or capacitor of length L. We found in
Section 3.3 that

a
D, = s
P
Hence,
a
E = ﬁap
€op

where pg is the surface charge density on the inner conductor, whose radius is a.

Thus,
L p2r b 2.2 2.2
a wLa b
:%/ / / €o zpjpdpd¢dz=7psln—
0 0 a €50 €0 a

This same result may be obtained from Eq. (42). We choose the outer conductor
as our zero-potential reference, and the potential of the inner cylinder is then

a

vaz—/ Epd,o:—/ w5 4y = 95 1, b

b b €op €0 a
The surface charge density pg at p = a can be interpreted as a volume charge density
oy = ps/t, extending from p = a — %t top=a+ %t, where ¢ < a. The integrand
in Eq. (42) is therefore zero everywhere between the cylinders (where the volume
charge density is zero), as well as at the outer cylinder (where the potential is zero).
The integration is therefore performed only within the thin cylindrical shell at p = a,

mopat2 5o
WE=%/ pyVdv =1 // / —a—ln ,od,odzpdz
vo a—t/2

from which

a? Ps ln(b/a)
€0

Wg =

once again.

This expression takes on a more familiar form if we recognize the total charge
on the inner conductor as Q = 2mwaLpg. Combining this with the potential difference
between the cylinders, V,, we see that

Wg =350V,

which should be familiar as the energy stored in a capacitor.
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The question of where the energy is stored in an electric field has not yet been
answered. Potential energy can never be pinned down precisely in terms of physical
location. Someone lifts a pencil, and the pencil acquires potential energy. Is the energy
stored in the molecules of the pencil, in the gravitational field between the pencil and
the earth, or in some obscure place? Is the energy in a capacitor stored in the charges
themselves, in the field, or where? No one can offer any proof for his or her own
private opinion, and the matter of deciding may be left to the philosophers.

Electromagnetic field theory makes it easy to believe that the energy of an electric
field or a charge distribution is stored in the field itself, for if we take Eq. (44), an
exact and rigorously correct expression,

We=1 / D-Edv
vol
and write it on a differential basis,
dWg = iD-Edv

or

dWg

F ;D-E (45)
we obtain a quantity %D - E, which has the dimensions of an energy density, or joules
per cubic meter. We know that if we integrate this energy density over the entire field-
containing volume, the result is truly the total energy present, but we have no more
justification for saying that the energy stored in each differential volume element dv
is %D - E dv than we have for looking at Eq. (42) and saying that the stored energy is
%pv Vdv. The interpretation afforded by Eq. (45), however, is a convenient one, and
we will use it until proved wrong.

D4.11. Find the energy stored in free space for the region 2 mm < 50 O< 3
mm, 0 < 6 < 90°,0 < ¢ < 90°, given the potential field V =: (a) — V;
r
300 cos 6
(b) — V.

Ans. 46.4 1J;36.7]
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CHAPTER 4 PROBLEMS m

41l

421

431

441

451

461

471

481

4914

The value of E at P(p =2, ¢ =40°, z = 3) is given as E = 100a,,
—200a4 + 300a, V/m. Determine the incremental work required to move a
20 uC charge a distance of 6 ;um: (a) in the direction of a,; (b) in the
direction of a,; (c) in the direction of a,; (d) in the direction of E; (e) in the
direction of G = 2a, — 3a, +4a..

A positive point charge of magnitude ¢, lies at the origin. Derive an
expression for the incremental work done in moving a second point charge ¢
through a distance dx from the starting position (x, y, z), in the direction

of —a,.

If E = 120a,V/m, find the incremental amount of work done in moving
a 50-uC charge a distance of 2 mm from (a) P(1, 2, 3) toward Q(2, 1, 4); (b)
02, 1,4) toward P(1, 2, 3).

An electric field in free space is given by E = xa, + ya, + za, V/m. Find
the work done in moving a 1-uC charge through this field (a) from (1, 1, 1)
to (0, 0, 0); (b) from (p =2,¢ = 0) to (p = 2, p = 90°); (¢) from (r = 10,
0 = 6p) to (r = 10,6 = 6y + 180°).

Compute the value of fAP G - dL for G = 2ya, with A(1, —1, 2) and

P(2, 1, 2) using the path (a) straight-line segments A(1, —1,2) to B(1, 1, 2)
to P(2, 1, 2); (b) straight-line segments A(1, —1,2) to C(2, —1, 2) to
P2,1,2).

An electric field in free space is given as E = x 4, +4z4, + 4y .. Given
V(,1,1) =10V, determine V (3, 3, 3).

Let G = 3xy?a, + 2za, Given an initial point P(2, 1, 1) and a final point
04,3, 1), find f G - dL using the path (a) straight line: y = x — 1,
z = 1;(b) parabola: 6y = xX242,7=1.

Given E = —xa, + ya,, (a) find the work involved in moving a unit positive
charge on a circular arc, the circle centered at the origin, from x = a to

x =y = a/+/2; (b) verify that the work done in moving the charge around
the full circle from x = a is zero.

A uniform surface charge density of 20 nC/m? is present on the spherical
surface r = 0.6 cm in free space. (a) Find the absolute potential at

P(r =1cm, 0 = 25° ¢ = 50°). (b) Find V, 3, given points A(r = 2 cm,
0 =30° ¢ =60°) and B(r =3 cm, 6 =45°, ¢ = 90°).

4100 A sphere of radius a carries a surface charge density of p,o C/m?. (a) Find

the absolute potential at the sphere surface. (b) A grounded conducting shell
of radius b where b > a is now positioned around the charged sphere. What
is the potential at the inner sphere surface in this case?

4.11 Let a uniform surface charge density of 5 nC/m? be present at the z = 0

plane, a uniform line charge density of 8 nC/m be located at x = 0, z = 4,
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and a point charge of 2 uC be present at P(2,0,0). If V =0 at M(0, 0, 5),
find V at N(1, 2, 3).

4128 spherical coordinates, E = 2r/(r> 4+ a*)*a, V/m. Find the potential at any
point, using the reference (a)V = 0 at infinity; (b) V =0 atr = 0;
(c)V =100V atr = a.

4.13 | Three identical point charges of 4 pC each are located at the corners of an
equilateral triangle 0.5 mm on a side in free space. How much work must be
done to move one charge to a point equidistant from the other two and on the
line joining them?

4.14 § Given the electric field E = (y + Da, + (x — Da, + 2a, find the potential
difference between the points (a) (2, —2, —1) and (0, 0, 0); (b) (3,2, —1) and
(=2,-3,4).

4.15 | Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at
x = —1, y = 2 in free space. If the potential at the origin is 100 V, find V at
P4,1,3).

4161 A spherically symmetric charge distribution in free space (with 0 < r < 00)
is known to have a potential function V(r) = Voa?/r?, where Vy and a are
constants. (a) Find the electric field intensity. (») Find the volume charge
density. (c) Find the charge contained inside radius a. (d) Find the total
energy stored in the charge (or equivalently, in its electric field).

4.17 ! Uniform surface charge densities of 6 and 2 nC/m? are present at p = 2 and
6 cm, respectively, in free space. Assume V = 0 at p = 4 cm, and calculate
Vat(a)p=5cm;(b)p =7cm.

4.18 ! Find the potential at the origin produced by a line charge p; = kx /(x> + a?)
extending along the x axis from x = a to 400, where a > 0. Assume a zero
reference at infinity.

4.19i The annular surface 1 cm < p < 3 cm, z = 0, carries the nonuniform surface
charge density p; = 50 nC/m?. Find V at P(0, 0, 2 cm) if V = 0 at infinity.

4.20§ In a certain medium, the electric potential is given by

Vi) = 2L (1 - )
aegp
where pg and a are constants. (a) Find the electric field intensity, E. (b) Find
the potential difference between the points x = d and x = 0. (c) If the
medium permittivity is given by €(x) = €pe™, find the electric flux density,
D, and the volume charge density, p,, in the region. (d) Find the stored
energy in the region (0 < x <d), O <y < 1),(0 <z < 1).

4210 Let v = 2xy%z3 + 31n(x? + 2y? 4+ 3z%) V in free space. Evaluate each of the
following quantities at P(3, 2, —1) (a) V; (D) |V]; (¢) E; (d) |E|; (e) ay;
(f)D.
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4.220 A line charge of infinite length lies along the z axis and carries a uniform
linear charge density of p, C/m. A perfectly conducting cylindrical shell,
whose axis is the z axis, surrounds the line charge. The cylinder (of radius b),
is at ground potential. Under these conditions, the potential function inside
the cylinder (p < b) is given by

V(p) =k — 2 In(p)

2mey

where k is a constant. () Find k in terms of given or known parameters.

(b) Find the electric field strength, E, for p < b. (c¢) Find the electric field

strength, E, for p > b. (d) Find the stored energy in the electric field per unit

length in the z direction within the volume defined by p > a, where a < b.

4.23 U It is known that the potential is given as V = 800%% V. Assuming free space
conditions, find. (a) E; (b) the volume charge density at p = 0.5 m; (¢) the
total charge lying within the closed surface p = 0.6,0 <z < 1.

4.24 1 A certain spherically symmetric charge configuration in free space produces
an electric field given in spherical coordinates by

(por?)/(100p)a, V/m  (r < 10)
(100p9)/(€or*)a, V/m  (r > 10)

where py is a constant. (a) Find the charge density as a function of position.
(b) Find the absolute potential as a function of position in the two regions,

r < 10and r > 10. (c) Check your result of part b by using the gradient.

(d) Find the stored energy in the charge by an integral of the form of Eq. (43).
(e) Find the stored energy in the field by an integral of the form of Eq. (45).

E(r) = {

4.25 | Within the cylinder p = 2,0 < z < 1, the potential is given by V = 100 +
50p + 150p sin¢V. (a) Find V, E, D, and p, at P(1, 60°, 0.5) in free space.
(b) How much charge lies within the cylinder?

4.26 | Let us assume that we have a very thin, square, imperfectly conducting plate
2 m on a side, located in the plane z = O with one corner at the origin such
that it lies entirely within the first quadrant. The potential at any point in
the plate is given as V = —e ™" sin y. (@) An electron enters the plate at
x = 0, y = m/3 with zero initial velocity; in what direction is its initial
movement? (b) Because of collisions with the particles in the plate, the
electron achieves a relatively low velocity and little acceleration (the work
that the field does on it is converted largely into heat). The electron therefore
moves approximately along a streamline. Where does it leave the plate and in
what direction is it moving at the time?

4.27H Two point charges, 1 nC at (0, 0, 0.1) and —1 nC at (0, 0, —0.1), are in free
space. (a) Calculate V at P(0.3, 0, 0.4). (b) Calculate |E| at P. (c) Now treat
the two charges as a dipole at the origin and find V at P.

4.28 | Use the electric field intensity of the dipole [Section 4.7, Eq. (35)] to find the
difference in potential between points at 8, and 6,, each point having the
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same r and ¢ coordinates. Under what conditions does the answer agree with
Eq. (33), for the potential at 6,?

4290 A dipole having a moment p = 3a, — 5a, + 10a, nC - mis located at
Q(1, 2, —4) in free space. Find V at P(2, 3, 4).

430k A dipole for which p = 10€pa, C - m is located at the origin. What is the
equation of the surface on which E, = 0 but E # 0?

431l A potential field in free space is expressed as V = 20/(xyz) V. (a) Find the
total energy stored within the cube 1 < x, y, z < 2. (b) What value would be
obtained by assuming a uniform energy density equal to the value at the
center of the cube?

43214 (a) Using Eq. (35), find the energy stored in the dipole field in the region
r > a.(b) Why can we not let a approach zero as a limit?

4330 A copper sphere of radius 4 cm carries a uniformly distributed total charge
of 5 uC in free space. (a) Use Gauss’s law to find D external to the sphere.
(b) Calculate the total energy stored in the electrostatic field. (c) Use Wg =
0?/(2C) to calculate the capacitance of the isolated sphere.

434l A sphere of radius a contains volume charge of uniform density py C/m?.
Find the total stored energy by applying (a) Eq. (42); (b) Eq. (44).

4.35 | Four 0.8 nC point charges are located in free space at the corners of a square
4 cm on a side. (a) Find the total potential energy stored. (b) A fifth 0.8 nC
charge is installed at the center of the square. Again find the total stored
energy.

4.36 ! Surface charge of uniform density p; lies on a spherical shell of radius b,
centered at the origin in free space. (a) Find the absolute potential
everywhere, with zero reference at infinity. () Find the stored energy in the
sphere by considering the charge density and the potential in a
two-dimensional version of Eq. (42). (c) Find the stored energy in the electric
field and show that the results of parts (b) and (c) are identical.



CHAPTER

Conductors and
Dielectrics

n this chapter, we apply the methods we have learned to some of the materials

with which an engineer must work. In the first part of the chapter, we consider

conducting materials by describing the parameters that relate current to an applied
electric field. This leads to a general definition of Ohm’s law. We then develop methods
of evaluating resistances of conductors in a few simple geometric forms. Conditions
that must be met at a conducting boundary are obtained next, and this knowledge
leads to a discussion of the method of images. The properties of semiconductors are
described to conclude the discussion of conducting media.

In the second part of the chapter, we consider insulating materials, or dielectrics.
Such materials differ from conductors in that ideally, there is no free charge that can be
transported within them to produce conduction current. Instead, all charge is confined
to molecular or lattice sites by coulomb forces. An applied electric field has the effect
of displacing the charges slightly, leading to the formation of ensembles of electric
dipoles. The extent to which this occurs is measured by the relative permittivity, or
dielectric constant. Polarization of the medium may modify the electric field, whose
magnitude and direction may differ from the values it would have in a different
medium or in free space. Boundary conditions for the fields at interfaces between
dielectrics are developed to evaluate these differences.

It should be noted that most materials will possess both dielectric and conductive
properties; that is, a material considered a dielectric may be slightly conductive, and
a material that is mostly conductive may be slightly polarizable. These departures
from the ideal cases lead to some interesting behavior, particularly as to the effects
on electromagnetic wave propagation, as we will see later. M
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5.1 CURRENT AND CURRENT DENSITY

Electric charges in motion constitute a current. The unit of current is the ampere (A),
defined as a rate of movement of charge passing a given reference point (or crossing
a given reference plane) of one coulomb per second. Current is symbolized by 7, and
therefore

a0
I = T (1)
Current is thus defined as the motion of positive charges, even though conduction in
metals takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather
than within a large region, and we find the concept of current density, measured in
amperes per square meter (A/m?), more useful. Current density is a vector' represented
by J.

The increment of current A/ crossing an incremental surface AS normal to the
current density is

Al = JyAS
and in the case where the current density is not perpendicular to the surface,
Al =J-AS

Total current is obtained by integrating,

I=/J-dS 2)
S

Current density may be related to the velocity of volume charge density at a point.
Consider the element of charge AQ = p,Av = p, AS AL, as shown in Figure 5.1a.
To simplify the explanation, assume that the charge element is oriented with its edges
parallel to the coordinate axes and that it has only an x component of velocity. In
the time interval A¢, the element of charge has moved a distance Ax, as indicated in
Figure 5.1b. We have therefore moved a charge A Q = p, AS Ax through a reference
plane perpendicular to the direction of motion in a time increment Az, and the resulting
current is

AQ Ax
Al = — =p, AS—
At At

As we take the limit with respect to time, we have

Al = p, ASv,

! Current is not a vector, for it is easy to visualize a problem in which a total current / in a conductor of
nonuniform cross section (such as a sphere) may have a different direction at each point of a given
cross section. Current in an exceedingly fine wire, or a filamentary current, is occasionally defined as a
vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to
the current.
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AQ=p,Av

\ AQ =pyAlf/,
\ -

/ < / o

AS AL
(@) (b)

Figure 5.1 Anincrement of charge, AQ = p,AS AL, which moves a distance Ax in
atime At, produces a component of current density in the limit of Jy = p, vx.

where v, represents the x component of the velocity v.> In terms of current density,
we find

Jy = py vy
and in general

J=pv 3)

This last result shows clearly that charge in motion constitutes a current. We
call this type of current a convection current, and J or p,v is the convection current
density. Note that the convection current density is related linearly to charge density
as well as to velocity. The mass rate of flow of cars (cars per square foot per second)
in the Holland Tunnel could be increased either by raising the density of cars per
cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10p%za, — 4p cos” ¢ a, mA/m?:
(a) find the current density at P(p = 3, ¢ = 30°, z = 2); (b) determine the
total current flowing outward through the circular band p = 3,0 < ¢ < 2m,
2 <z<28.

Ans. 180a, — 9a, mA/m?; 3.26 A

5.2 CONTINUITY OF CURRENT

The introduction of the concept of current is logically followed by a discussion of the
conservation of charge and the continuity equation. The principle of conservation of
charge states simply that charges can be neither created nor destroyed, although equal

2The lowercase v is used both for volume and velocity. Note, however, that velocity always appears as
a vector v, a component vy, or a magnitude |v|, whereas volume appears only in differential form as dv
or Av.
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amounts of positive and negative charge may be simultaneously created, obtained by
separation, or lost by recombination.

The continuity equation follows from this principle when we consider any region
bounded by a closed surface. The current through the closed surface is

szJodS
s

and this outward flow of positive charge must be balanced by a decrease of positive
charge (or perhaps an increase of negative charge) within the closed surface. If the
charge inside the closed surface is denoted by Q;, then the rate of decrease is —d Q; /dt
and the principle of conservation of charge requires

L do
1_5€st_ & @)

It might be well to answer here an often-asked question. “Isn’t there a sign error?
I thought I = dQ/dt.” The presence or absence of a negative sign depends on what
current and charge we consider. In circuit theory we usually associate the current flow
into one terminal of a capacitor with the time rate of increase of charge on that plate.
The current of (4), however, is an outward-flowing current.

Equation (4) is the integral form of the continuity equation; the differential, or
point, form is obtained by using the divergence theorem to change the surface integral

into a volume integral:
fJ-dS:f (V-Ddv
S vol

We next represent the enclosed charge Q; by the volume integral of the charge density,

d
V-Ddv=—— vd
/vol( J) ’ dt /\:olp ’

If we agree to keep the surface constant, the derivative becomes a partial derivative
and may appear within the integral,

dpy
/vol(V . J)dv - /vol B ot v

from which we have our point form of the continuity equation,

9Py

(V‘J):_at

®)

Remembering the physical interpretation of divergence, this equation indicates
that the current, or charge per second, diverging from a small volume per unit volume
is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sec-
tions, let us consider a current density that is directed radially outward and decreases
exponentially with time,

1
J=-¢""a, A/m>
p
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Selecting an instant of time t = 1 s, we may calculate the total outward current at
r=>5m:
I=1J8=(ie")4n5")=23.1A
At the same instant, but for a slightly larger radius, r = 6 m, we have
I=1785=(te")(4n6?) =27.7A

Thus, the total current is larger at » = 6 than itis atr = 5.
To see why this happens, we need to look at the volume charge density and the
velocity. We use the continuity equation first:

p 1 19/ ,1 |
o v:V- -V . _—tar — _ 2° —t —
ot ] <re ) r2 8r<r re ) rze

We next seek the volume charge density by integrating with respect to ¢. Because p,
is given by a partial derivative with respect to time, the “constant” of integration may
be a function of r:

1 1
oy = —/—ze_t dt + K(r) = — e + K(r)
r r
If we assume that p, — 0 as t — oo, then K(r) = 0, and
1
py= e’ C/m®
,

We may now use J = p, v to find the velocity,

J,
v,——r_ 'i =r m/s
Pv et
2

The velocity is greater at r = 6 than itis at » = 5, and we see that some (unspecified)
force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to r, a charge
density that is inversely proportional to 72, and a velocity and total current that are

proportional to r. All quantities vary as e~

D5.2. Current density is given in cylindrical coordinates as J = —10°z!a,

A/m? in the region 0 < p < 20 um; for p > 20 um, J = 0. (a) Find the total
current crossing the surface z = 0.1 m in the a, direction. (b) If the charge
velocity is 2 x 10°® m/s at z = 0.1 m, find p, there. (c) If the volume charge
density at z = 0.15 m is —2000 C/m?, find the charge velocity there.

Ans. —39.7 uA; —15.8 mC/m>; 29.0 m/s
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5.3 METALLIC CONDUCTORS

Physicists describe the behavior of the electrons surrounding the positive atomic
nucleus in terms of the total energy of the electron with respect to a zero reference
level for an electron at an infinite distance from the nucleus. The total energy is the
sum of the kinetic and potential energies, and because energy must be given to an
electron to pull it away from the nucleus, the energy of every electron in the atom is
a negative quantity. Even though this picture has some limitations, it is convenient to
associate these energy values with orbits surrounding the nucleus, the more negative
energies corresponding to orbits of smaller radius. According to the quantum theory,
only certain discrete energy levels, or energy states, are permissible in a given atom,
and an electron must therefore absorb or emit discrete amounts of energy, or quanta,
in passing from one level to another. A normal atom at absolute zero temperature has
an electron occupying every one of the lower energy shells, starting outward from the
nucleus and continuing until the supply of electrons is exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed closely
together, many more electrons are present, and many more permissible energy levels
are available because of the interaction forces between adjacent atoms. We find that
the allowed energies of electrons are grouped into broad ranges, or “bands,” each band
consisting of very numerous, closely spaced, discrete levels. At a temperature of abso-
lute zero, the normal solid also has every level occupied, starting with the lowest and
proceeding in order until all the electrons are located. The electrons with the highest
(least negative) energy levels, the valence electrons, are located in the valence band. If
there are permissible higher-energy levels in the valence band, or if the valence band
merges smoothly into a conduction band, then additional kinetic energy may be given
to the valence electrons by an external field, resulting in an electron flow. The solid is
called a metallic conductor. The filled valence band and the unfilled conduction band
for a conductor at absolute zero temperature are suggested by the sketch in Figure 5.2a.

If, however, the electron with the greatest energy occupies the top level in the
valence band and a gap exists between the valence band and the conduction band, then

Empty
conduction
band Eipty
conduction
Empty band
conduction Energy gap -
Energy ol Energy gap
Filled Filled Filled
valence valence valence
band band band
Conductor Insulator Semiconductor

(@) ) (©

Figure 5.2 The energy-band structure in three different types of materials
at O K. (@) The conductor exhibits no energy gap between the valence and
conduction bands. (b) The insulator shows a large energy gap. (c) The
semiconductor has only a small energy gap.



CHAPTER 5 Conductors and Dielectrics

the electron cannot accept additional energy in small amounts, and the material is an
insulator. This band structure is indicated in Figure 5.2b. Note that if a relatively large
amount of energy can be transferred to the electron, it may be sufficiently excited to
jump the gap into the next band where conduction can occur easily. Here the insulator
breaks down.

Anintermediate condition occurs when only a small “forbidden region” separates
the two bands, as illustrated by Figure 5.2¢. Small amounts of energy in the form of
heat, light, or an electric field may raise the energy of the electrons at the top of the
filled band and provide the basis for conduction. These materials are insulators which
display many of the properties of conductors and are called semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduction,
or free, electrons, move under the influence of an electric field. With a field E, an
electron having a charge Q = —e will experience a force

F=—¢cE

In free space, the electron would accelerate and continuously increase its velocity
(and energy); in the crystalline material, the progress of the electron is impeded
by continual collisions with the thermally excited crystalline lattice structure, and a
constant average velocity is soon attained. This velocity v, is termed the drift velocity,
and it is linearly related to the electric field intensity by the mobility of the electron
in the given material. We designate mobility by the symbol p (mu), so that

Vi = —pE (6)

where (. is the mobility of an electron and is positive by definition. Note that the
electron velocity is in a direction opposite to the direction of E. Equation (6) also
shows that mobility is measured in the units of square meters per volt-second; typical
values® are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.

For these good conductors, a drift velocity of a few centimeters per second is
sufficient to produce a noticeable temperature rise and can cause the wire to melt if
the heat cannot be quickly removed by thermal conduction or radiation.

Substituting (6) into Eq. (3) of Section 5.1, we obtain

where p, is the free-electron charge density, a negative value. The total charge density
oy 1S zero because equal positive and negative charges are present in the neutral
material. The negative value of p, and the minus sign lead to a current density J that
is in the same direction as the electric field intensity E.

The relationship between J and E for a metallic conductor, however, is also
specified by the conductivity o (sigma),

J=0oE (8)

3 Wert and Thomson, p. 238, listed in the References at the end of this chapter.

(i)
ustrations
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where o is measured is siemens* per meter (S/m). One siemens (1 S) is the basic
unit of conductance in the SI system and is defined as one ampere per volt. Formerly,
the unit of conductance was called the mho and was symbolized by an inverted <.
Just as the siemens honors the Siemens brothers, the reciprocal unit of resistance that
we call the ohm (1 €2 is one volt per ampere) honors Georg Simon Ohm, a German
physicist who first described the current-voltage relationship implied by Eq. (8). We
call this equation the point form of Ohm’s law; we will look at the more common
form of Ohm’s law shortly.

First, however, it is informative to note the conductivity of several metallic con-
ductors; typical values (in siemens per meter) are 3.82 x 107 for aluminum, 5.80 x 107
for copper, and 6.17 x 107 for silver. Data for other conductors may be found in
Appendix C. On seeing data such as these, it is only natural to assume that we are be-
ing presented with constant values; this is essentially true. Metallic conductors obey
Ohm’s law quite faithfully, and it is a linear relationship; the conductivity is constant
over wide ranges of current density and electric field intensity. Ohm’s law and the
metallic conductors are also described as isotropic, or having the same properties in
every direction. A material which is not isotropic is called anisotropic, and we shall
mention such a material in Chapter 6.

The conductivity is a function of temperature, however. The resistivity, which
is the reciprocal of the conductivity, varies almost linearly with temperature in the
region of room temperature, and for aluminum, copper, and silver it increases about
0.4 percent for a 1-K rise in temperature.’ For several metals the resistivity drops
abruptly to zero at a temperature of a few kelvin; this property is termed super-
conductivity. Copper and silver are not superconductors, although aluminum is (for
temperatures below 1.14 K).

If we now combine Equations (7) and (8), conductivity may be expressed in terms
of the charge density and the electron mobility,

From the definition of mobility (6), itis now satisfying to note that a higher temperature
infers a greater crystalline lattice vibration, more impeded electron progress for a given
electric field strength, lower drift velocity, lower mobility, lower conductivity from
Eq. (9), and higher resistivity as stated.

The application of Ohm’s law in point form to a macroscopic (visible to the naked
eye) region leads to a more familiar form. Initially, assume that J and E are uniform,
as they are in the cylindrical region shown in Figure 5.3. Because they are uniform,

szJ-dS:JS (10)
S

4 This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who
were famous engineer-inventors in the nineteenth century. Karl became a British subject and was
knighted, becoming Sir William Siemens.

3 Copious temperature data for conducting materials are available in the Standard Handbook for
Electrical Engineers, listed among the References at the end of this chapter.
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Conductivity o
D ——
Area=S
4
1=JS — E=7
e
L

Figure 5.3 Uniform current density J and electric field
intensity £ in a cylindrical region of length L and cross-
sectional area S. Here V = IR, where R =L /o S.

and
Vab=—/ E-dL=—E-/ dL = —E - L,
b b
—E-Ly (1n
or
V =FEL
Thus
1 \%
J=—=—=0FE=0—
S L
or
L
V=—I
oS

The ratio of the potential difference between the two ends of the cylinder to
the current entering the more positive end, however, is recognized from elementary
circuit theory as the resistance of the cylinder, and therefore

V =1IR (12)
where
R = L (13)
T oS

Equation (12) is, of course, known as Ohm’s law, and Eq. (13) enables us to compute
the resistance R, measured in ohms (abbreviated as €2), of conducting objects which
possess uniform fields. If the fields are not uniform, the resistance may still be defined
as the ratio of V to I, where V is the potential difference between two specified
equipotential surfaces in the material and 7 is the total current crossing the more
positive surface into the material. From the general integral relationships in Eqgs. (10)
and (11), and from Ohm’s law (8), we may write this general expression for resistance
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when the fields are nonuniform,

R_E_—fb”E-dL
o JsoE - dS

(14
The line integral is taken between two equipotential surfaces in the conductor, and
the surface integral is evaluated over the more positive of these two equipotentials.
We cannot solve these nonuniform problems at this time, but we should be able to
solve several of them after reading Chapter 6.

As an example of the determination of the resistance of a cylinder, we find the resis-
tance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.

Solution. The diameter of the wire is 0.0508 x 0.0254 = 1.291 x 1073 m, the area of
the cross sectionis 7 (1.291 x 10’3/2)2 = 1.308 x 10~°m?, and the length is 1609 m.
Using a conductivity of 5.80 x 107 S/m, the resistance of the wire is, therefore,

1609

R =
(5.80 x 107)(1.308 x 10°)

=212Q

This wire can safely carry about 10 A dc, corresponding to a current density of
10/(1.308 x 107%) = 7.65 x 10% A/m?, or 7.65 A/mm?. With this current, the potential
difference between the two ends of the wire is 212 'V, the electric field intensity is
0.312 V/m, the drift velocity is 0.000 422 m/s, or a little more than one furlong a week,
and the free-electron charge density is —1.81 x 10'® C/m?, or about one electron
within a cube two angstroms on a side.

D5.3. Find the magnitude of the current density in a sample of silver for
which o = 6.17 x 107 S/m and ., = 0.0056 m?/V - s if (a) the drift velocity
is 1.5 um/s ; (b) the electric field intensity is 1 mV/m; (c¢) the sample is a cube
2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (d) the
sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.

Ans. 16.5 kA/m?; 61.7 kA/m?; 9.9 MA/m?; 80.0 kA/m?
D5.4. A copper conductor has a diameter of 0.6 in. and it is 1200 ft long.
Assume that it carries a total dc current of 50 A. (a) Find the total resistance of

the conductor. (b) What current density exists in it? (¢) What is the dc voltage
between the conductor ends? (d) How much power is dissipated in the wire?

Ans. 0.035 ©;2.74 x 10° A/m?; 1.73 V; 86.4 W
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5.4 CONDUCTOR PROPERTIES
AND BOUNDARY CONDITIONS

Once again, we must temporarily depart from our assumed static conditions and let
time vary for a few microseconds to see what happens when the charge distribution is
suddenly unbalanced within a conducting material. Suppose, for the sake of argument,
that there suddenly appear a number of electrons in the interior of a conductor. The
electric fields set up by these electrons are not counteracted by any positive charges,
and the electrons therefore begin to accelerate away from each other. This continues
until the electrons reach the surface of the conductor or until a number of electrons
equal to the number injected have reached the surface.

Here, the outward progress of the electrons is stopped, for the material surround-
ing the conductor is an insulator not possessing a convenient conduction band. No
charge may remain within the conductor. If it did, the resulting electric field would
force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a surface
charge density resides on the exterior surface. This is one of the two characteristics
of a good conductor.

The other characteristic, stated for static conditions in which no current may flow,
follows directly from Ohm’s law: the electric field intensity within the conductor is
zero. Physically, we see that if an electric field were present, the conduction electrons
would move and produce a current, thus leading to a nonstatic condition.

Summarizing for electrostatics, no charge and no electric field may exist at any
point within a conducting material. Charge may, however, appear on the surface as a
surface charge density, and our next investigation concerns the fields external to the
conductor.

We wish to relate these external fields to the charge on the surface of the conductor.
The problem is a simple one, and we may first talk our way to the solution with a
little mathematics.

If the external electric field intensity is decomposed into two components, one
tangential and one normal to the conductor surface, the tangential component is seen
to be zero. If it were not zero, a tangential force would be applied to the elements of
the surface charge, resulting in their motion and nonstatic conditions. Because static
conditions are assumed, the tangential electric field intensity and electric flux density
are zero.

Gauss’s law answers our questions concerning the normal component. The elec-
tric flux leaving a small increment of surface must be equal to the charge residing on
that incremental surface. The flux cannot penetrate into the conductor, for the total
field there is zero. It must then leave the surface normally. Quantitatively, we may
say that the electric flux density in coulombs per square meter leaving the surface
normally is equal to the surface charge density in coulombs per square meter, or
Dy = ps.

If we use some of our previously derived results in making a more careful analysis
(and incidentally introducing a general method which we must use later), we should set
up a boundary between a conductor and free space (Figure 5.4) showing tangential
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Free space

Conductor

Figure 5.4 An appropriate closed path and gaussian surface are used to
determine boundary conditions at a boundary between a conductor and free
space; £y = 0and Dy = ps.

and normal components of D and E on the free-space side of the boundary. Both
fields are zero in the conductor. The tangential field may be determined by applying

Section 4.5, Eq. (21),
?gE -dL =0

around the small closed path abcda. The integral must be broken up into four parts

b c d a
[+ +] =0
a b ¢ d
Remembering that E = 0 within the conductor, we let the length from a to b or ¢ to
d be Aw and from b to ¢ or d to a be Ah, and obtain

E,Aw — Eyap3Ah+ Eyaaz A =0

As we allow A#h to approach zero, keeping Aw small but finite, it makes no
difference whether or not the normal fields are equal at @ and b, for Ah causes these
products to become negligibly small. Hence, £, Aw = 0 and, therefore, E, = 0.

The condition on the normal field is found most readily by considering Dy rather
than Ey and choosing a small cylinder as the gaussian surface. Let the height be Ah
and the area of the top and bottom faces be AS. Again, we let Ah approach zero.
Using Gauss’s law,

?gn-dszg
N

we integrate over the three distinct surfaces

/ + / + / =0
top bottom sides

and find that the last two are zero (for different reasons). Then

DyAS = Q = psAS
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or
Dy = ps

These are the desired boundary conditions for the conductor-to-free-space bound-

ary in electrostatics,
0

‘ Dy = €gEn = ps ‘ (16)

The electric flux leaves the conductor in a direction normal to the surface, and the
value of the electric flux density is numerically equal to the surface charge density.
Equations (15) and (16) can be more formally expressed using the vector fields

Exn|s:0 (17)

Don| =p (18)

where n is the unit normal vector at the surface that points away from the conductor,
as shown in Figure 5.4, and where both operations are evaluated at the conductor
surface, s. Taking the cross product or the dot product of either field quantity with n
gives the tangential or the normal component of the field, respectively.

An immediate and important consequence of a zero tangential electric field in-
tensity is the fact that a conductor surface is an equipotential surface. The evaluation
of the potential difference between any two points on the surface by the line integral
leads to a zero result, because the path may be chosen on the surface itself where
E-dL=0.

To summarize the principles which apply to conductors in electrostatic fields, we
may state that

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere
directed normal to that surface.

3. The conductor surface is an equipotential surface.

Using these three principles, there are a number of quantities that may be calcu-
lated at a conductor boundary, given a knowledge of the potential field.

Given the potential,
V = 100(x> — y?)

and a point P(2, —1, 3) that is stipulated to lie on a conductor-to-free-space boundary,
find V, E, D, and pg at P, and also the equation of the conductor surface.

Solution. The potential at point P is

Vp = 100[2% — (=1)*] = 300 V

121
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1 z =73 plane
1 3
0
x2_y2=
V=300V
—1 P(2,-1,3)
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Figure 5.5 Given point P2, —1, 3) and the
potential field, V = 100(x? — y?), we find the
equipotential surface through P is x2 — y? = 3,
and the streamline through P is xy = —2.

Because the conductor is an equipotential surface, the potential at the entire sur-
face must be 300 V. Moreover, if the conductor is a solid object, then the potential
everywhere in and on the conductor is 300 V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300 V is

300 = 100(x> — y?)
or
x2—y?=3
This is therefore the equation of the conductor surface; it happens to be a hyperbolic
cylinder, as shown in Figure 5.5. Let us assume arbitrarily that the solid conductor
lies above and to the right of the equipotential surface at point P, whereas free space

is down and to the left.
Next, we find E by the gradient operation,

E = —100V(x? — y*) = —200xa, + 200ya,
At point P,
E, = —400a, — 200a, V/m
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Because D = ¢yE, we have
Dy = 8.854 x 107 "?Ep = —3.54a, — 1.771a, nC/m’

The field is directed downward and to the left at P; it is normal to the equipotential
surface. Therefore,

Dy = |Dp| = 3.96 nC/m?
Thus, the surface charge density at P is
ps.p = Dy = 3.96 nC/m>

Note that if we had taken the region to the left of the equipotential surface as the
conductor, the E field would ferminate on the surface charge and we would let
ps = —3.96 nC/m?.

Finally, let us determine the equation of the streamline passing through P.

Solution. We see that

E, 200y y dy
E. —200x  x dx
Thus,
d d
dy  dx _
y X
and
Iny+1Inx =C
Therefore,
xy =G

The line (or surface) through P is obtained when C, = (2)(—1) = —2. Thus, the
streamline is the trace of another hyperbolic cylinder,

xy =-2

This is also shown on Figure 5.5.

D5.5. Given the potential field in free space, V = 100 sinh 5x sin5y V, and
a point P(0.1, 0.2, 0.3), find at P: (a) V; (b) E; (¢) |E|; (d) |ps]| if it is known
that P lies on a conductor surface.

Ans. 43.8 V; —474a, — 140.8a, V/m; 495 V/m; 4.38 nC/m?
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5.5 THE METHOD OF IMAGES

One important characteristic of the dipole field that we developed in Chapter 4 is
the infinite plane at zero potential that exists midway between the two charges. Such
a plane may be represented by a vanishingly thin conducting plane that is infinite
in extent. The conductor is an equipotential surface at a potential V = 0, and the
electric field intensity is therefore normal to the surface. Thus, if we replace the
dipole configuration shown in Figure 5.6a with the single charge and conducting
plane shown in Figure 5.6b, the fields in the upper half of each figure are the same.
Below the conducting plane, all fields are zero, as we have not provided any charges
in that region. Of course, we might also substitute a single negative charge below a
conducting plane for the dipole arrangement and obtain equivalence for the fields in
the lower half of each region.

If we approach this equivalence from the opposite point of view, we begin with a
single charge above a perfectly conducting plane and then see that we may maintain
the same fields above the plane by removing the plane and locating a negative charge
at a symmetrical location below the plane. This charge is called the image of the
original charge, and it is the negative of that value.

If we can do this once, linearity allows us to do it again and again, and thus any
charge configuration above an infinite ground plane may be replaced by an arrange-
ment composed of the given charge configuration, its image, and no conducting plane.
This is suggested by the two illustrations of Figure 5.7. In many cases, the potential
field of the new system is much easier to find since it does not contain the conducting
plane with its unknown surface charge distribution.

As an example of the use of images, let us find the surface charge density at
P(2,5,0) on the conducting plane z = 0 if there is a line charge of 30 nC/m located
at x = 0, z = 3, as shown in Figure 5.8a. We remove the plane and install an
image line charge of —30 nC/m at x = 0, z = —3, as illustrated in Figure 5.8b.
The field at P may now be obtained by superposition of the known fields of the line

t0e t0e

tQe Qe

Equipotential surface, V'=0 Conducting plane, V'=0

— Q o
(a) ®)

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single charge
and a conducting plane without affecting the fields above the V' = O surface.



