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The dipole moment p will appear again when we discuss dielectric materials.

Since it is equal to the product of the charge and the separation, neither the dipole

moment nor the potential will change as Q increases and d decreases, provided the

product remains constant. The limiting case of a point dipole is achieved when we let

d approach zero and Q approach infinity such that the product p is finite.

Turning our attention to the resultant fields, it is interesting to note that the

potential field is now proportional to the inverse square of the distance, and the

electric field intensity is proportional to the inverse cube of the distance from

the dipole. Each field falls off faster than the corresponding field for the point charge,

but this is no more than we should expect because the opposite charges appear to

be closer together at greater distances and to act more like a single point charge

of zero Coulombs.

Symmetrical arrangements of larger numbers of point charges produce fields

proportional to the inverse of higher and higher powers of r . These charge distributions

are called multipoles, and they are used in infinite series to approximate more unwieldy

charge configurations.

D4.9. An electric dipole located at the origin in free space has a moment

p = 3ax − 2ay + az nC · m. (a) Find V at PA(2, 3, 4). (b) Find V at r = 2.5,

θ = 30◦, φ = 40◦.

Ans. 0.23 V; 1.97 V

D4.10. A dipole of moment p = 6az nC · m is located at the origin in free

space. (a) Find V at P(r = 4, θ = 20◦, φ = 0◦). (b) Find E at P.

Ans. 3.17 V; 1.58ar + 0.29aθ V/m

4.8 ENERGY DENSITY IN THE
ELECTROSTATIC FIELD

We have introduced the potential concept by considering the work done, or en-

ergy expended, in moving a point charge around in an electric field, and now we

must tie up the loose ends of that discussion by tracing the energy flow one step

further.

Bringing a positive charge from infinity into the field of another positive charge

requires work, the work being done by the external source moving the charge. Let

us imagine that the external source carries the charge up to a point near the fixed

charge and then holds it there. Energy must be conserved, and the energy expended in

bringing this charge into position now represents potential energy, for if the external

source released its hold on the charge, it would accelerate away from the fixed charge,

acquiring kinetic energy of its own and the capability of doing work.

In order to find the potential energy present in a system of charges, we must find

the work done by an external source in positioning the charges.
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We may start by visualizing an empty universe. Bringing a charge Q1 from infinity

to any position requires no work, for there is no field present.2 The positioning of

Q2 at a point in the field of Q1 requires an amount of work given by the product of

the charge Q2 and the potential at that point due to Q1. We represent this potential

as V2,1, where the first subscript indicates the location and the second subscript the

source. That is, V2,1 is the potential at the location of Q2 due to Q1. Then

Work to position Q2 = Q2V2,1

Similarly, we may express the work required to position each additional charge

in the field of all those already present:

Work to position Q3 = Q3V3,1 + Q3V3,2

Work to position Q4 = Q4V4,1 + Q4V4,2 + Q4V4,3

and so forth. The total work is obtained by adding each contribution:

Total positioning work = potential energy of field

= WE = Q2V2,1 + Q3V3,1 + Q3V3,2 + Q4V4,1

+Q4V4,2 + Q4V4,3 + · · · (39)

Noting the form of a representative term in the preceding equation,

Q3V3,1 = Q3

Q1

4πε0 R13

= Q1

Q3

4πε0 R31

where R13 and R31 each represent the scalar distance between Q1 and Q3, we see that

it might equally well have been written as Q1V1,3. If each term of the total energy

expression is replaced by its equal, we have

WE = Q1V1,2 + Q1V1,3 + Q2V2,3 + Q1V1,4 + Q2V2,4 + Q3V3,4 + · · · (40)

Adding the two energy expressions (39) and (40) gives us a chance to simplify the

result a little:

2WE = Q1(V1,2 + V1,3 + V1,4 + · · ·)
+ Q2(V2,1 + V2,3 + V2,4 + · · ·)
+ Q3(V3,1 + V3,2 + V3,4 + · · ·)
+ · · ·

Each sum of potentials in parentheses is the combined potential due to all the charges

except for the charge at the point where this combined potential is being found. In

other words,

V1,2 + V1,3 + V1,4 + · · · = V1

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the

point charge in the first place! How much energy is required to bring two half-charges into coincidence

to make a unit charge?



102 ENGINEERING ELECTROMAGNETICS

V1 is the potential at the location of Q1 due to the presence of Q2, Q3, . . . . We

therefore have

WE = 1
2
(Q1V1 + Q2V2 + Q3V3 + · · ·) = 1

2

m=N
∑

m=1

Qm Vm (41)

In order to obtain an expression for the energy stored in a region of continuous

charge distribution, each charge is replaced by ρνdv , and the summation becomes an

integral,

WE = 1
2

∫

vol

ρνV dv (42)

Equations (41) and (42) allow us to find the total potential energy present in a

system of point charges or distributed volume charge density. Similar expressions

may be easily written in terms of line or surface charge density. Usually we prefer

to use Eq. (42) and let it represent all the various types of charge which may have to

be considered. This may always be done by considering point charges, line charge

density, or surface charge density to be continuous distributions of volume charge

density over very small regions. We will illustrate such a procedure with an example

shortly.

Before we undertake any interpretation of this result, we should consider a few

lines of more difficult vector analysis and obtain an expression equivalent to Eq. (42)

but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first

equation, replace ρν by its equal ∇ · D and make use of a vector identity which is true

for any scalar function V and any vector function D,

∇ · (V D) ≡ V (∇ · D) + D · (∇V ) (43)

This may be proved readily by expansion in rectangular coordinates. We then have,

successively,

WE = 1
2

∫

vol

ρνV dv = 1
2

∫

vol

(∇ · D)V dv

= 1
2

∫

vol

[∇ · (V D) − D · (∇V )] dv

Using the divergence theorem from Chapter 3, the first volume integral of the last

equation is changed into a closed surface integral, where the closed surface surrounds

the volume considered. This volume, first appearing in Eq. (42), must contain every

charge, and there can then be no charges outside of the volume. We may therefore

consider the volume as infinite in extent if we wish. We have

WE = 1
2

∮

S

(V D) · dS − 1
2

∫

vol

D · (∇V ) dv

The surface integral is equal to zero, for over this closed surface surrounding the

universe we see that V is approaching zero at least as rapidly as 1/r (the charges

look like point charges from there), and D is approaching zero at least as rapidly as

1/r2. The integrand therefore approaches zero at least as rapidly as 1/r3, while the
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differential area of the surface, looking more and more like a portion of a sphere,

is increasing only as r2. Consequently, in the limit as r → ∞, the integrand and

the integral both approach zero. Substituting E = −∇V in the remaining volume

integral, we have our answer,

WE = 1
2

∫

vol

D · E dv = 1
2

∫

vol

ε0 E2 dv (44)

We may now use this last expression to calculate the energy stored in the elec-

trostatic field of a section of a coaxial cable or capacitor of length L . We found in

Section 3.3 that

Dρ =
aρS

ρ

Hence,

E =
aρS

ε0ρ
aρ

where ρS is the surface charge density on the inner conductor, whose radius is a.

Thus,

WE = 1
2

∫ L

0

∫ 2π

0

∫ b

a

ε0

a2ρ2
S

ε2
0ρ

2
ρ dρ dφ dz =

π L a2ρ2
S

ε0

ln
b

a

This same result may be obtained from Eq. (42). We choose the outer conductor

as our zero-potential reference, and the potential of the inner cylinder is then

Va = −
∫ a

b

Eρ dρ = −
∫ a

b

aρS

ε0ρ
dρ =

aρS

ε0

ln
b

a

The surface charge density ρS at ρ = a can be interpreted as a volume charge density

ρν = ρS/t , extending from ρ = a − 1
2
t to ρ = a + 1

2
t , where t � a. The integrand

in Eq. (42) is therefore zero everywhere between the cylinders (where the volume

charge density is zero), as well as at the outer cylinder (where the potential is zero).

The integration is therefore performed only within the thin cylindrical shell at ρ = a,

WE = 1
2

∫

vol

ρν V dV = 1
2

∫ L

0

∫ 2π

0

∫ a+t/2

a−t/2

ρS

t
a

ρS

ε0

ln
b

a
ρ dρ dφ dz

from which

WE =
a2ρ2

S ln(b/a)

ε0

πL

once again.

This expression takes on a more familiar form if we recognize the total charge

on the inner conductor as Q = 2πaLρS . Combining this with the potential difference

between the cylinders, Va , we see that

WE = 1
2

QVa

which should be familiar as the energy stored in a capacitor.
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The question of where the energy is stored in an electric field has not yet been

answered. Potential energy can never be pinned down precisely in terms of physical

location. Someone lifts a pencil, and the pencil acquires potential energy. Is the energy

stored in the molecules of the pencil, in the gravitational field between the pencil and

the earth, or in some obscure place? Is the energy in a capacitor stored in the charges

themselves, in the field, or where? No one can offer any proof for his or her own

private opinion, and the matter of deciding may be left to the philosophers.

Electromagnetic field theory makes it easy to believe that the energy of an electric

field or a charge distribution is stored in the field itself, for if we take Eq. (44), an

exact and rigorously correct expression,

WE = 1
2

∫

vol

D · E dv

and write it on a differential basis,

dWE = 1
2
D · E dv

or

dWE

dv
= 1

2
D · E (45)

we obtain a quantity 1
2
D · E, which has the dimensions of an energy density, or joules

per cubic meter. We know that if we integrate this energy density over the entire field-

containing volume, the result is truly the total energy present, but we have no more

justification for saying that the energy stored in each differential volume element dv

is 1
2
D · E dv than we have for looking at Eq. (42) and saying that the stored energy is

1
2
ρνV dv . The interpretation afforded by Eq. (45), however, is a convenient one, and

we will use it until proved wrong.

D4.11. Find the energy stored in free space for the region 2 mm < r < 3

mm, 0 < θ < 90◦, 0 < φ < 90◦, given the potential field V = : (a)
200

r
V;

(b)
300 cos θ

r2
V.

Ans. 46.4 µJ; 36.7 J
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CHAPTER 4 PROBLEMS

4.1 The value of E at P(ρ = 2, φ = 40◦, z = 3) is given as E = 100aρ

− 200aφ + 300az V/m. Determine the incremental work required to move a

20 µC charge a distance of 6 µm: (a) in the direction of aρ ; (b) in the

direction of aφ ; (c) in the direction of az ; (d) in the direction of E; (e) in the

direction of G = 2ax − 3ay + 4az .

4.2 A positive point charge of magnitude q1 lies at the origin. Derive an

expression for the incremental work done in moving a second point charge q2

through a distance dx from the starting position (x, y, z), in the direction

of −ax .

4.3 If E = 120aρV/m, find the incremental amount of work done in moving

a 50-µC charge a distance of 2 mm from (a) P(1, 2, 3) toward Q(2, 1, 4); (b)

Q(2, 1, 4) toward P(1, 2, 3).

4.4 An electric field in free space is given by E = xax + yay + zaz V/m. Find

the work done in moving a 1-µC charge through this field (a) from (1, 1, 1)

to (0, 0, 0); (b) from (ρ = 2, φ = 0) to (ρ = 2, φ = 90◦); (c) from (r = 10,

θ = θ0) to (r = 10, θ = θ0 + 180◦).

4.5 Compute the value of
∫ P

A
G · dL for G = 2yax with A(1, −1, 2) and

P(2, 1, 2) using the path (a) straight-line segments A(1, −1, 2) to B(1, 1, 2)

to P(2, 1, 2); (b) straight-line segments A(1, −1, 2) to C(2, −1, 2) to

P(2, 1, 2).

4.6 An electric field in free space is given as E = x âx + 4z ây + 4y âz . Given

V (1, 1, 1) = 10 V, determine V (3, 3, 3).

4.7 Let G = 3xy2ax + 2zay Given an initial point P(2, 1, 1) and a final point

Q(4, 3, 1), find
∫

G · dL using the path (a) straight line: y = x − 1,

z = 1; (b) parabola: 6y = x2 + 2, z = 1.

4.8 Given E = −xax + yay , (a) find the work involved in moving a unit positive

charge on a circular arc, the circle centered at the origin, from x = a to

x = y = a/
√

2; (b) verify that the work done in moving the charge around

the full circle from x = a is zero.

4.9 A uniform surface charge density of 20 nC/m2 is present on the spherical

surface r = 0.6 cm in free space. (a) Find the absolute potential at

P(r = 1 cm, θ = 25◦, φ = 50◦). (b) Find VAB , given points A(r = 2 cm,

θ = 30◦, φ = 60◦) and B(r = 3 cm, θ = 45◦, φ = 90◦).

4.10 A sphere of radius a carries a surface charge density of ρs0 C/m2. (a) Find

the absolute potential at the sphere surface. (b) A grounded conducting shell

of radius b where b > a is now positioned around the charged sphere. What

is the potential at the inner sphere surface in this case?

4.11 Let a uniform surface charge density of 5 nC/m2 be present at the z = 0

plane, a uniform line charge density of 8 nC/m be located at x = 0, z = 4,
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and a point charge of 2 µC be present at P(2, 0, 0). If V = 0 at M(0, 0, 5),

find V at N (1, 2, 3).

4.12 In spherical coordinates, E = 2r/(r2 + a2)2ar V/m. Find the potential at any

point, using the reference (a)V = 0 at infinity; (b) V = 0 at r = 0;

(c)V = 100 V at r = a.

4.13 Three identical point charges of 4 pC each are located at the corners of an

equilateral triangle 0.5 mm on a side in free space. How much work must be

done to move one charge to a point equidistant from the other two and on the

line joining them?

4.14 Given the electric field E = (y + 1)ax + (x − 1)ay + 2az find the potential

difference between the points (a) (2, −2, −1) and (0, 0, 0); (b) (3, 2, −1) and

(−2, −3, 4).

4.15 Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at

x = −1, y = 2 in free space. If the potential at the origin is 100 V, find V at

P(4, 1, 3).

4.16 A spherically symmetric charge distribution in free space (with 0 < r < ∞)

is known to have a potential function V (r ) = V0a2/r2, where V0 and a are

constants. (a) Find the electric field intensity. (b) Find the volume charge

density. (c) Find the charge contained inside radius a. (d) Find the total

energy stored in the charge (or equivalently, in its electric field).

4.17 Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and

6 cm, respectively, in free space. Assume V = 0 at ρ = 4 cm, and calculate

V at (a) ρ = 5 cm; (b) ρ = 7 cm.

4.18 Find the potential at the origin produced by a line charge ρL = kx/(x2 + a2)

extending along the x axis from x = a to +∞, where a > 0. Assume a zero

reference at infinity.

4.19 The annular surface 1 cm < ρ < 3 cm, z = 0, carries the nonuniform surface

charge density ρs = 5ρ nC/m2. Find V at P(0, 0, 2 cm) if V = 0 at infinity.

4.20 In a certain medium, the electric potential is given by

V (x) =
ρ0

aε0

(

1 − e−ax
)

where ρ0 and a are constants. (a) Find the electric field intensity, E. (b) Find

the potential difference between the points x = d and x = 0. (c) If the

medium permittivity is given by ε(x) = ε0eax , find the electric flux density,

D, and the volume charge density, ρv , in the region. (d) Find the stored

energy in the region (0 < x < d), (0 < y < 1), (0 < z < 1).

4.21 Let V = 2xy2z3 + 3 ln(x2 + 2y2 + 3z2) V in free space. Evaluate each of the

following quantities at P(3, 2, −1) (a) V ; (b) |V |; (c) E; (d) |E|; (e) aN ;

( f ) D.
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4.22 A line charge of infinite length lies along the z axis and carries a uniform

linear charge density of ρ	 C/m. A perfectly conducting cylindrical shell,

whose axis is the z axis, surrounds the line charge. The cylinder (of radius b),

is at ground potential. Under these conditions, the potential function inside

the cylinder (ρ < b) is given by

V (ρ) = k −
ρ	

2πε0

ln(ρ)

where k is a constant. (a) Find k in terms of given or known parameters.

(b) Find the electric field strength, E, for ρ < b. (c) Find the electric field

strength, E, for ρ > b. (d) Find the stored energy in the electric field per unit

length in the z direction within the volume defined by ρ > a, where a < b.

4.23 It is known that the potential is given as V = 80ρ0.6 V. Assuming free space

conditions, find. (a) E; (b) the volume charge density at ρ = 0.5 m; (c) the

total charge lying within the closed surface ρ = 0.6, 0 < z < 1.

4.24 A certain spherically symmetric charge configuration in free space produces

an electric field given in spherical coordinates by

E(r ) =
{

(ρ0r2)/(100ε0) ar V/m (r f 10)

(100ρ0)/(ε0r2) ar V/m (r g 10)

where ρ0 is a constant. (a) Find the charge density as a function of position.

(b) Find the absolute potential as a function of position in the two regions,

r f 10 and r g 10. (c) Check your result of part b by using the gradient.

(d) Find the stored energy in the charge by an integral of the form of Eq. (43).

(e) Find the stored energy in the field by an integral of the form of Eq. (45).

4.25 Within the cylinder ρ = 2, 0 < z < 1, the potential is given by V = 100 +
50ρ + 150ρ sin φV. (a) Find V, E, D, and ρν at P(1, 60◦, 0.5) in free space.

(b) How much charge lies within the cylinder?

4.26 Let us assume that we have a very thin, square, imperfectly conducting plate

2 m on a side, located in the plane z = 0 with one corner at the origin such

that it lies entirely within the first quadrant. The potential at any point in

the plate is given as V = −e−x sin y. (a) An electron enters the plate at

x = 0, y = π/3 with zero initial velocity; in what direction is its initial

movement? (b) Because of collisions with the particles in the plate, the

electron achieves a relatively low velocity and little acceleration (the work

that the field does on it is converted largely into heat). The electron therefore

moves approximately along a streamline. Where does it leave the plate and in

what direction is it moving at the time?

4.27 Two point charges, 1 nC at (0, 0, 0.1) and −1 nC at (0, 0, −0.1), are in free

space. (a) Calculate V at P(0.3, 0, 0.4). (b) Calculate |E| at P . (c) Now treat

the two charges as a dipole at the origin and find V at P.

4.28 Use the electric field intensity of the dipole [Section 4.7, Eq. (35)] to find the

difference in potential between points at θa and θb, each point having the
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same r and φ coordinates. Under what conditions does the answer agree with

Eq. (33), for the potential at θa?

4.29 A dipole having a moment p = 3ax − 5ay + 10az nC · m is located at

Q(1, 2, −4) in free space. Find V at P(2, 3, 4).

4.30 A dipole for which p = 10ε0az C · m is located at the origin. What is the

equation of the surface on which Ez = 0 but E �= 0?

4.31 A potential field in free space is expressed as V = 20/(xyz) V. (a) Find the

total energy stored within the cube 1 < x, y, z < 2. (b) What value would be

obtained by assuming a uniform energy density equal to the value at the

center of the cube?

4.32 (a) Using Eq. (35), find the energy stored in the dipole field in the region

r > a. (b) Why can we not let a approach zero as a limit?

4.33 A copper sphere of radius 4 cm carries a uniformly distributed total charge

of 5 µC in free space. (a) Use Gauss’s law to find D external to the sphere.

(b) Calculate the total energy stored in the electrostatic field. (c) Use WE =
Q2/(2C) to calculate the capacitance of the isolated sphere.

4.34 A sphere of radius a contains volume charge of uniform density ρ0 C/m3.

Find the total stored energy by applying (a) Eq. (42); (b) Eq. (44).

4.35 Four 0.8 nC point charges are located in free space at the corners of a square

4 cm on a side. (a) Find the total potential energy stored. (b) A fifth 0.8 nC

charge is installed at the center of the square. Again find the total stored

energy.

4.36 Surface charge of uniform density ρs lies on a spherical shell of radius b,

centered at the origin in free space. (a) Find the absolute potential

everywhere, with zero reference at infinity. (b) Find the stored energy in the

sphere by considering the charge density and the potential in a

two-dimensional version of Eq. (42). (c) Find the stored energy in the electric

field and show that the results of parts (b) and (c) are identical.
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Conductors and
Dielectrics

I
n this chapter, we apply the methods we have learned to some of the materials

with which an engineer must work. In the first part of the chapter, we consider

conducting materials by describing the parameters that relate current to an applied

electric field. This leads to a general definition of Ohm’s law. We then develop methods

of evaluating resistances of conductors in a few simple geometric forms. Conditions

that must be met at a conducting boundary are obtained next, and this knowledge

leads to a discussion of the method of images. The properties of semiconductors are

described to conclude the discussion of conducting media.

In the second part of the chapter, we consider insulating materials, or dielectrics.

Such materials differ from conductors in that ideally, there is no free charge that can be

transported within them to produce conduction current. Instead, all charge is confined

to molecular or lattice sites by coulomb forces. An applied electric field has the effect

of displacing the charges slightly, leading to the formation of ensembles of electric

dipoles. The extent to which this occurs is measured by the relative permittivity, or

dielectric constant. Polarization of the medium may modify the electric field, whose

magnitude and direction may differ from the values it would have in a different

medium or in free space. Boundary conditions for the fields at interfaces between

dielectrics are developed to evaluate these differences.

It should be noted that most materials will possess both dielectric and conductive

properties; that is, a material considered a dielectric may be slightly conductive, and

a material that is mostly conductive may be slightly polarizable. These departures

from the ideal cases lead to some interesting behavior, particularly as to the effects

on electromagnetic wave propagation, as we will see later. ■

109
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5.1 CURRENT AND CURRENT DENSITY

Electric charges in motion constitute a current. The unit of current is the ampere (A),

defined as a rate of movement of charge passing a given reference point (or crossing

a given reference plane) of one coulomb per second. Current is symbolized by I , and

therefore

I =
d Q

dt
(1)

Current is thus defined as the motion of positive charges, even though conduction in

metals takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather

than within a large region, and we find the concept of current density, measured in

amperes per square meter (A/m2), more useful. Current density is a vector1 represented

by J.

The increment of current �I crossing an incremental surface �S normal to the

current density is

�I = JN �S

and in the case where the current density is not perpendicular to the surface,

�I = J · �S

Total current is obtained by integrating,

I =
∫

S

J · dS (2)

Current density may be related to the velocity of volume charge density at a point.

Consider the element of charge �Q = ρν�ν = ρν �S �L , as shown in Figure 5.1a.

To simplify the explanation, assume that the charge element is oriented with its edges

parallel to the coordinate axes and that it has only an x component of velocity. In

the time interval �t , the element of charge has moved a distance �x , as indicated in

Figure 5.1b. We have therefore moved a charge �Q = ρν �S �x through a reference

plane perpendicular to the direction of motion in a time increment �t , and the resulting

current is

�I =
�Q

�t
= ρν �S

�x

�t

As we take the limit with respect to time, we have

�I = ρν �S vx

1 Current is not a vector, for it is easy to visualize a problem in which a total current I in a conductor of

nonuniform cross section (such as a sphere) may have a different direction at each point of a given

cross section. Current in an exceedingly fine wire, or a filamentary current, is occasionally defined as a

vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to

the current.
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Figure 5.1 An increment of charge, �Q = ρν�S�L, which moves a distance �x in

a time �t, produces a component of current density in the limit of Jx = ρννx .

where νx represents the x component of the velocity v.2 In terms of current density,

we find

Jx = ρν νx

and in general

J = ρνv (3)

This last result shows clearly that charge in motion constitutes a current. We

call this type of current a convection current, and J or ρνv is the convection current

density. Note that the convection current density is related linearly to charge density

as well as to velocity. The mass rate of flow of cars (cars per square foot per second)

in the Holland Tunnel could be increased either by raising the density of cars per

cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10ρ2zaρ − 4ρ cos2 φ aφ mA/m2:

(a) find the current density at P(ρ = 3, φ = 30◦, z = 2); (b) determine the

total current flowing outward through the circular band ρ = 3, 0 < φ < 2π,

2 < z < 2.8.

Ans. 180aρ − 9aφ mA/m2; 3.26 A

5.2 CONTINUITY OF CURRENT

The introduction of the concept of current is logically followed by a discussion of the

conservation of charge and the continuity equation. The principle of conservation of

charge states simply that charges can be neither created nor destroyed, although equal

2The lowercase ν is used both for volume and velocity. Note, however, that velocity always appears as

a vector v, a component νx , or a magnitude |v|, whereas volume appears only in differential form as dν

or �ν.
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amounts of positive and negative charge may be simultaneously created, obtained by

separation, or lost by recombination.

The continuity equation follows from this principle when we consider any region

bounded by a closed surface. The current through the closed surface is

I =
∮

S

J · dS

and this outward flow of positive charge must be balanced by a decrease of positive

charge (or perhaps an increase of negative charge) within the closed surface. If the

charge inside the closed surface is denoted by Qi , then the rate of decrease is −d Qi/dt

and the principle of conservation of charge requires

I =
∮

S

J · dS = −
d Qi

dt
(4)

It might be well to answer here an often-asked question. “Isn’t there a sign error?

I thought I = dQ/dt .” The presence or absence of a negative sign depends on what

current and charge we consider. In circuit theory we usually associate the current flow

into one terminal of a capacitor with the time rate of increase of charge on that plate.

The current of (4), however, is an outward-flowing current.

Equation (4) is the integral form of the continuity equation; the differential, or

point, form is obtained by using the divergence theorem to change the surface integral

into a volume integral:
∮

S

J · dS =
∫

vol

(∇ · J) dv

We next represent the enclosed charge Qi by the volume integral of the charge density,
∫

vol

(∇ · J) dv = −
d

dt

∫

vol

ρν dv

If we agree to keep the surface constant, the derivative becomes a partial derivative

and may appear within the integral,
∫

vol

(∇ · J) dv =
∫

vol

−
∂ρν

∂t
dv

from which we have our point form of the continuity equation,

(∇ · J) = −
∂ρν

∂t
(5)

Remembering the physical interpretation of divergence, this equation indicates

that the current, or charge per second, diverging from a small volume per unit volume

is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sec-

tions, let us consider a current density that is directed radially outward and decreases

exponentially with time,

J =
1

r
e−t ar A/m2
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Selecting an instant of time t = 1 s, we may calculate the total outward current at

r = 5 m:

I = Jr S =
(

1
5
e−1

)

(4π52) = 23.1 A

At the same instant, but for a slightly larger radius, r = 6 m, we have

I = Jr S =
(

1
6
e−1

)(

4π62
)

= 27.7 A

Thus, the total current is larger at r = 6 than it is at r = 5.

To see why this happens, we need to look at the volume charge density and the

velocity. We use the continuity equation first:

−
∂ρν

∂t
= ∇ · J = ∇ ·

(

1

r
e−t ar

)

=
1

r2

∂

∂r

(

r2 1

r
e−t

)

=
1

r2
e−t

We next seek the volume charge density by integrating with respect to t . Because ρν

is given by a partial derivative with respect to time, the “constant” of integration may

be a function of r :

ρν = −
∫

1

r2
e−t dt + K(r ) =

1

r2
e−t + K(r )

If we assume that ρν → 0 as t → ∞, then K(r ) = 0, and

ρν =
1

r2
e−t C/m3

We may now use J = ρνv to find the velocity,

νr =
Jr

ρν

=

1

r
e−t

1

r2
e−t

= r m/s

The velocity is greater at r = 6 than it is at r = 5, and we see that some (unspecified)

force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to r , a charge

density that is inversely proportional to r2, and a velocity and total current that are

proportional to r . All quantities vary as e−t.

D5.2. Current density is given in cylindrical coordinates as J = −106z1.5az

A/m2 in the region 0 f ρ f 20 µm; for ρ g 20 µm, J = 0. (a) Find the total

current crossing the surface z = 0.1 m in the az direction. (b) If the charge

velocity is 2 × 106 m/s at z = 0.1 m, find ρν there. (c) If the volume charge

density at z = 0.15 m is −2000 C/m3, find the charge velocity there.

Ans. −39.7 µA; −15.8 mC/m3; 29.0 m/s
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5.3 METALLIC CONDUCTORS

Physicists describe the behavior of the electrons surrounding the positive atomic

nucleus in terms of the total energy of the electron with respect to a zero reference

level for an electron at an infinite distance from the nucleus. The total energy is the

sum of the kinetic and potential energies, and because energy must be given to an

electron to pull it away from the nucleus, the energy of every electron in the atom is

a negative quantity. Even though this picture has some limitations, it is convenient to

associate these energy values with orbits surrounding the nucleus, the more negative

energies corresponding to orbits of smaller radius. According to the quantum theory,

only certain discrete energy levels, or energy states, are permissible in a given atom,

and an electron must therefore absorb or emit discrete amounts of energy, or quanta,

in passing from one level to another. A normal atom at absolute zero temperature has

an electron occupying every one of the lower energy shells, starting outward from the

nucleus and continuing until the supply of electrons is exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed closely

together, many more electrons are present, and many more permissible energy levels

are available because of the interaction forces between adjacent atoms. We find that

the allowed energies of electrons are grouped into broad ranges, or “bands,” each band

consisting of very numerous, closely spaced, discrete levels. At a temperature of abso-

lute zero, the normal solid also has every level occupied, starting with the lowest and

proceeding in order until all the electrons are located. The electrons with the highest

(least negative) energy levels, the valence electrons, are located in the valence band. If

there are permissible higher-energy levels in the valence band, or if the valence band

merges smoothly into a conduction band, then additional kinetic energy may be given

to the valence electrons by an external field, resulting in an electron flow. The solid is

called a metallic conductor. The filled valence band and the unfilled conduction band

for a conductor at absolute zero temperature are suggested by the sketch in Figure 5.2a.

If, however, the electron with the greatest energy occupies the top level in the

valence band and a gap exists between the valence band and the conduction band, then

Figure 5.2 The energy-band structure in three different types of materials

at 0 K. (a) The conductor exhibits no energy gap between the valence and

conduction bands. (b) The insulator shows a large energy gap. (c) The

semiconductor has only a small energy gap.
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the electron cannot accept additional energy in small amounts, and the material is an

insulator. This band structure is indicated in Figure 5.2b. Note that if a relatively large

amount of energy can be transferred to the electron, it may be sufficiently excited to

jump the gap into the next band where conduction can occur easily. Here the insulator

breaks down.

An intermediate condition occurs when only a small “forbidden region” separates

the two bands, as illustrated by Figure 5.2c. Small amounts of energy in the form of

heat, light, or an electric field may raise the energy of the electrons at the top of the

filled band and provide the basis for conduction. These materials are insulators which

display many of the properties of conductors and are called semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduction,

or free, electrons, move under the influence of an electric field. With a field E, an

electron having a charge Q = −e will experience a force

F = −eE

In free space, the electron would accelerate and continuously increase its velocity

(and energy); in the crystalline material, the progress of the electron is impeded

by continual collisions with the thermally excited crystalline lattice structure, and a

constant average velocity is soon attained. This velocity vd is termed the drift velocity,

and it is linearly related to the electric field intensity by the mobility of the electron

in the given material. We designate mobility by the symbol µ (mu), so that

vd = −µeE (6)

where µε is the mobility of an electron and is positive by definition. Note that the

electron velocity is in a direction opposite to the direction of E. Equation (6) also

shows that mobility is measured in the units of square meters per volt-second; typical

values3 are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.

For these good conductors, a drift velocity of a few centimeters per second is

sufficient to produce a noticeable temperature rise and can cause the wire to melt if

the heat cannot be quickly removed by thermal conduction or radiation.

Substituting (6) into Eq. (3) of Section 5.1, we obtain

J = −ρeµeE (7)

where ρe is the free-electron charge density, a negative value. The total charge density

ρν is zero because equal positive and negative charges are present in the neutral

material. The negative value of ρe and the minus sign lead to a current density J that

is in the same direction as the electric field intensity E.

The relationship between J and E for a metallic conductor, however, is also

specified by the conductivity σ (sigma),

J = σE (8)

3 Wert and Thomson, p. 238, listed in the References at the end of this chapter.
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where σ is measured is siemens4 per meter (S/m). One siemens (1 S) is the basic

unit of conductance in the SI system and is defined as one ampere per volt. Formerly,

the unit of conductance was called the mho and was symbolized by an inverted 	.

Just as the siemens honors the Siemens brothers, the reciprocal unit of resistance that

we call the ohm (1 	 is one volt per ampere) honors Georg Simon Ohm, a German

physicist who first described the current-voltage relationship implied by Eq. (8). We

call this equation the point form of Ohm’s law; we will look at the more common

form of Ohm’s law shortly.

First, however, it is informative to note the conductivity of several metallic con-

ductors; typical values (in siemens per meter) are 3.82×107 for aluminum, 5.80×107

for copper, and 6.17 × 107 for silver. Data for other conductors may be found in

Appendix C. On seeing data such as these, it is only natural to assume that we are be-

ing presented with constant values; this is essentially true. Metallic conductors obey

Ohm’s law quite faithfully, and it is a linear relationship; the conductivity is constant

over wide ranges of current density and electric field intensity. Ohm’s law and the

metallic conductors are also described as isotropic, or having the same properties in

every direction. A material which is not isotropic is called anisotropic, and we shall

mention such a material in Chapter 6.

The conductivity is a function of temperature, however. The resistivity, which

is the reciprocal of the conductivity, varies almost linearly with temperature in the

region of room temperature, and for aluminum, copper, and silver it increases about

0.4 percent for a 1-K rise in temperature.5 For several metals the resistivity drops

abruptly to zero at a temperature of a few kelvin; this property is termed super-

conductivity. Copper and silver are not superconductors, although aluminum is (for

temperatures below 1.14 K).

If we now combine Equations (7) and (8), conductivity may be expressed in terms

of the charge density and the electron mobility,

σ = −ρeµe (9)

From the definition of mobility (6), it is now satisfying to note that a higher temperature

infers a greater crystalline lattice vibration, more impeded electron progress for a given

electric field strength, lower drift velocity, lower mobility, lower conductivity from

Eq. (9), and higher resistivity as stated.

The application of Ohm’s law in point form to a macroscopic (visible to the naked

eye) region leads to a more familiar form. Initially, assume that J and E are uniform,

as they are in the cylindrical region shown in Figure 5.3. Because they are uniform,

I =
∫

S

J · dS = JS (10)

4 This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who

were famous engineer-inventors in the nineteenth century. Karl became a British subject and was

knighted, becoming Sir William Siemens.

5 Copious temperature data for conducting materials are available in the Standard Handbook for

Electrical Engineers, listed among the References at the end of this chapter.
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Figure 5.3 Uniform current density J and electric field

intensity E in a cylindrical region of length L and cross-

sectional area S. Here V = I R, where R = L/σ S.

and

Vab = −
∫ a

b

E · dL = −E ·

∫ a

b

dL = −E · Lba

= E · Lab (11)

or

V = E L

Thus

J =
I

S
= σE = σ

V

L

or

V =
L

σ S
I

The ratio of the potential difference between the two ends of the cylinder to

the current entering the more positive end, however, is recognized from elementary

circuit theory as the resistance of the cylinder, and therefore

V = I R (12)

where

R =
L

σ S
(13)

Equation (12) is, of course, known as Ohm’s law, and Eq. (13) enables us to compute

the resistance R, measured in ohms (abbreviated as 	), of conducting objects which

possess uniform fields. If the fields are not uniform, the resistance may still be defined

as the ratio of V to I , where V is the potential difference between two specified

equipotential surfaces in the material and I is the total current crossing the more

positive surface into the material. From the general integral relationships in Eqs. (10)

and (11), and from Ohm’s law (8), we may write this general expression for resistance
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when the fields are nonuniform,

R =
Vab

I
=

−
∫ a

b
E · dL

∫

S
σE · dS

(14)

The line integral is taken between two equipotential surfaces in the conductor, and

the surface integral is evaluated over the more positive of these two equipotentials.

We cannot solve these nonuniform problems at this time, but we should be able to

solve several of them after reading Chapter 6.

EXAMPLE 5.1

As an example of the determination of the resistance of a cylinder, we find the resis-

tance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.

Solution. The diameter of the wire is 0.0508×0.0254 = 1.291×10−3 m, the area of

the cross section is π (1.291×10−3/2)2 = 1.308×10−6 m2, and the length is 1609 m.

Using a conductivity of 5.80 × 107 S/m, the resistance of the wire is, therefore,

R =
1609

(5.80 × 107)(1.308 × 10−6)
= 21.2 	

This wire can safely carry about 10 A dc, corresponding to a current density of

10/(1.308×10−6) = 7.65×106 A/m2, or 7.65 A/mm2. With this current, the potential

difference between the two ends of the wire is 212 V, the electric field intensity is

0.312 V/m, the drift velocity is 0.000 422 m/s, or a little more than one furlong a week,

and the free-electron charge density is −1.81 × 1010 C/m3, or about one electron

within a cube two angstroms on a side.

D5.3. Find the magnitude of the current density in a sample of silver for

which σ = 6.17 × 107 S/m and µe = 0.0056 m2/V · s if (a) the drift velocity

is 1.5 µm/s ; (b) the electric field intensity is 1 mV/m; (c) the sample is a cube

2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (d) the

sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.

Ans. 16.5 kA/m2; 61.7 kA/m2; 9.9 MA/m2; 80.0 kA/m2

D5.4. A copper conductor has a diameter of 0.6 in. and it is 1200 ft long.

Assume that it carries a total dc current of 50 A. (a) Find the total resistance of

the conductor. (b) What current density exists in it? (c) What is the dc voltage

between the conductor ends? (d) How much power is dissipated in the wire?

Ans. 0.035 	; 2.74 × 105 A/m2; 1.73 V; 86.4 W
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5.4 CONDUCTOR PROPERTIES
AND BOUNDARY CONDITIONS

Once again, we must temporarily depart from our assumed static conditions and let

time vary for a few microseconds to see what happens when the charge distribution is

suddenly unbalanced within a conducting material. Suppose, for the sake of argument,

that there suddenly appear a number of electrons in the interior of a conductor. The

electric fields set up by these electrons are not counteracted by any positive charges,

and the electrons therefore begin to accelerate away from each other. This continues

until the electrons reach the surface of the conductor or until a number of electrons

equal to the number injected have reached the surface.

Here, the outward progress of the electrons is stopped, for the material surround-

ing the conductor is an insulator not possessing a convenient conduction band. No

charge may remain within the conductor. If it did, the resulting electric field would

force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a surface

charge density resides on the exterior surface. This is one of the two characteristics

of a good conductor.

The other characteristic, stated for static conditions in which no current may flow,

follows directly from Ohm’s law: the electric field intensity within the conductor is

zero. Physically, we see that if an electric field were present, the conduction electrons

would move and produce a current, thus leading to a nonstatic condition.

Summarizing for electrostatics, no charge and no electric field may exist at any

point within a conducting material. Charge may, however, appear on the surface as a

surface charge density, and our next investigation concerns the fields external to the

conductor.

We wish to relate these external fields to the charge on the surface of the conductor.

The problem is a simple one, and we may first talk our way to the solution with a

little mathematics.

If the external electric field intensity is decomposed into two components, one

tangential and one normal to the conductor surface, the tangential component is seen

to be zero. If it were not zero, a tangential force would be applied to the elements of

the surface charge, resulting in their motion and nonstatic conditions. Because static

conditions are assumed, the tangential electric field intensity and electric flux density

are zero.

Gauss’s law answers our questions concerning the normal component. The elec-

tric flux leaving a small increment of surface must be equal to the charge residing on

that incremental surface. The flux cannot penetrate into the conductor, for the total

field there is zero. It must then leave the surface normally. Quantitatively, we may

say that the electric flux density in coulombs per square meter leaving the surface

normally is equal to the surface charge density in coulombs per square meter, or

DN = ρS.

If we use some of our previously derived results in making a more careful analysis

(and incidentally introducing a general method which we must use later), we should set

up a boundary between a conductor and free space (Figure 5.4) showing tangential
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n

Figure 5.4 An appropriate closed path and gaussian surface are used to

determine boundary conditions at a boundary between a conductor and free

space; E t = 0 and DN = ρS.

and normal components of D and E on the free-space side of the boundary. Both

fields are zero in the conductor. The tangential field may be determined by applying

Section 4.5, Eq. (21),
∮

E · dL = 0

around the small closed path abcda. The integral must be broken up into four parts
∫ b

a

+
∫ c

b

+
∫ d

c

+
∫ a

d

= 0

Remembering that E = 0 within the conductor, we let the length from a to b or c to

d be �w and from b to c or d to a be �h, and obtain

Et�w − EN ,at b
1
2
�h + EN ,at a

1
2
�h = 0

As we allow �h to approach zero, keeping �w small but finite, it makes no

difference whether or not the normal fields are equal at a and b, for �h causes these

products to become negligibly small. Hence, Et�w = 0 and, therefore, Et = 0.

The condition on the normal field is found most readily by considering DN rather

than EN and choosing a small cylinder as the gaussian surface. Let the height be �h

and the area of the top and bottom faces be �S. Again, we let �h approach zero.

Using Gauss’s law,

∮

S

D · dS = Q

we integrate over the three distinct surfaces

∫

top

+
∫

bottom

+
∫

sides

= Q

and find that the last two are zero (for different reasons). Then

DN �S = Q = ρS�S
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or

DN = ρS

These are the desired boundary conditions for the conductor-to-free-space bound-

ary in electrostatics,

Dt = Et = 0 (15)

DN = ε0 EN = ρS (16)

The electric flux leaves the conductor in a direction normal to the surface, and the

value of the electric flux density is numerically equal to the surface charge density.

Equations (15) and (16) can be more formally expressed using the vector fields

E × n
∣

∣

s
= 0 (17)

D · n
∣

∣

s
= ρs (18)

where n is the unit normal vector at the surface that points away from the conductor,

as shown in Figure 5.4, and where both operations are evaluated at the conductor

surface, s. Taking the cross product or the dot product of either field quantity with n

gives the tangential or the normal component of the field, respectively.

An immediate and important consequence of a zero tangential electric field in-

tensity is the fact that a conductor surface is an equipotential surface. The evaluation

of the potential difference between any two points on the surface by the line integral

leads to a zero result, because the path may be chosen on the surface itself where

E · dL = 0.

To summarize the principles which apply to conductors in electrostatic fields, we

may state that

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere

directed normal to that surface.

3. The conductor surface is an equipotential surface.

Using these three principles, there are a number of quantities that may be calcu-

lated at a conductor boundary, given a knowledge of the potential field.

EXAMPLE 5.2

Given the potential,

V = 100(x2 − y2)

and a point P(2, −1, 3) that is stipulated to lie on a conductor-to-free-space boundary,

find V , E, D, and ρS at P , and also the equation of the conductor surface.

Solution. The potential at point P is

VP = 100[22 − (−1)2] = 300 V
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Figure 5.5 Given point P(2,−1, 3) and the

potential field, V = 100(x2 − y2), we find the

equipotential surface through P is x2 − y2 = 3,

and the streamline through P is xy = −2.

Because the conductor is an equipotential surface, the potential at the entire sur-

face must be 300 V. Moreover, if the conductor is a solid object, then the potential

everywhere in and on the conductor is 300 V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300 V is

300 = 100(x2 − y2)

or

x2 − y2 = 3

This is therefore the equation of the conductor surface; it happens to be a hyperbolic

cylinder, as shown in Figure 5.5. Let us assume arbitrarily that the solid conductor

lies above and to the right of the equipotential surface at point P , whereas free space

is down and to the left.

Next, we find E by the gradient operation,

E = −100∇(x2 − y2) = −200xax + 200yay

At point P,

Ep = −400ax − 200ay V/m
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Because D = ε0E, we have

DP = 8.854 × 10−12EP = −3.54ax − 1.771ay nC/m2

The field is directed downward and to the left at P; it is normal to the equipotential

surface. Therefore,

DN = |DP | = 3.96 nC/m2

Thus, the surface charge density at P is

ρS,P = DN = 3.96 nC/m2

Note that if we had taken the region to the left of the equipotential surface as the

conductor, the E field would terminate on the surface charge and we would let

ρS = −3.96 nC/m2.

EXAMPLE 5.3

Finally, let us determine the equation of the streamline passing through P.

Solution. We see that

Ey

Ex

=
200y

−200x
= −

y

x
=

dy

dx

Thus,

dy

y
+

dx

x
= 0

and

ln y + ln x = C1

Therefore,

xy = C2

The line (or surface) through P is obtained when C2 = (2)(−1) = −2. Thus, the

streamline is the trace of another hyperbolic cylinder,

xy = −2

This is also shown on Figure 5.5.

D5.5. Given the potential field in free space, V = 100 sinh 5x sin 5y V , and

a point P(0.1, 0.2, 0.3), find at P: (a) V ; (b) E; (c) |E|; (d) |ρS| if it is known

that P lies on a conductor surface.

Ans. 43.8 V; −474ax − 140.8ay V/m; 495 V/m; 4.38 nC/m2
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5.5 THE METHOD OF IMAGES

One important characteristic of the dipole field that we developed in Chapter 4 is

the infinite plane at zero potential that exists midway between the two charges. Such

a plane may be represented by a vanishingly thin conducting plane that is infinite

in extent. The conductor is an equipotential surface at a potential V = 0, and the

electric field intensity is therefore normal to the surface. Thus, if we replace the

dipole configuration shown in Figure 5.6a with the single charge and conducting

plane shown in Figure 5.6b, the fields in the upper half of each figure are the same.

Below the conducting plane, all fields are zero, as we have not provided any charges

in that region. Of course, we might also substitute a single negative charge below a

conducting plane for the dipole arrangement and obtain equivalence for the fields in

the lower half of each region.

If we approach this equivalence from the opposite point of view, we begin with a

single charge above a perfectly conducting plane and then see that we may maintain

the same fields above the plane by removing the plane and locating a negative charge

at a symmetrical location below the plane. This charge is called the image of the

original charge, and it is the negative of that value.

If we can do this once, linearity allows us to do it again and again, and thus any

charge configuration above an infinite ground plane may be replaced by an arrange-

ment composed of the given charge configuration, its image, and no conducting plane.

This is suggested by the two illustrations of Figure 5.7. In many cases, the potential

field of the new system is much easier to find since it does not contain the conducting

plane with its unknown surface charge distribution.

As an example of the use of images, let us find the surface charge density at

P(2, 5, 0) on the conducting plane z = 0 if there is a line charge of 30 nC/m located

at x = 0, z = 3, as shown in Figure 5.8a. We remove the plane and install an

image line charge of −30 nC/m at x = 0, z = −3, as illustrated in Figure 5.8b.

The field at P may now be obtained by superposition of the known fields of the line

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single charge

and a conducting plane without affecting the fields above the V = 0 surface.


