CHAPTER

Energy and Potential

n Chapters 2 and 3 we became acquainted with Coulomb's law and its use in finding the electric field about several simple distributions of charge, and also with Gauss's law and its application in determining the field about some symmetrical charge arrangements. The use of Gauss's law was invariably easier for these highly symmetrical distributions because the problem of integration always disappeared when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field, such as that of two unlike point charges separated by a small distance, we would have found it impossible to choose a suitable gaussian surface and obtain an answer. Coulomb's law, however, is more powerful and enables us to solve problems for which Gauss's law is not applicable. The application of Coulomb's law is laborious, detailed, and often quite complex, the reason for this being precisely the fact that the electric field intensity, a vector field, must be found directly from the charge distribution. Three different integrations are needed in general, one for each component, and the resolution of the vector into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar function with a single integration and then determine the electric field from this scalar by some simple straightforward procedure, such as differentiation.

This scalar function does exist and is known as the *potential* or *potential field*. We shall find that it has a very real physical interpretation and is more familiar to most of us than is the electric field which it will be used to find.

We should expect, then, to be equipped soon with a third method of finding electric fields—a single scalar integration, although not always as simple as we might wish, followed by a pleasant differentiation.

4.1 ENERGY EXPENDED IN MOVING A POINT CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point at which we wish to find the value of this vector field. If we attempt to move the test charge against the electric field, we have to exert a force equal and opposite to that exerted by the field, and this requires us to expend energy or do work. If we wish to move the charge in the direction of the field, our energy expenditure turns out to be negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance $d\mathbf{L}$ in an electric field \mathbf{E} . The force on Q arising from the electric field is

$$\mathbf{F}_E = Q\mathbf{E} \tag{1}$$

where the subscript reminds us that this force arises from the field. The component of this force in the direction $d\mathbf{L}$ which we must overcome is

$$F_{EL} = \mathbf{F} \cdot \mathbf{a}_L = Q \mathbf{E} \cdot \mathbf{a}_L$$

where $\mathbf{a}_L = \mathbf{a}$ unit vector in the direction of $d\mathbf{L}$.

The force that we must apply is equal and opposite to the force associated with the field.

$$F_{\text{appl}} = -Q\mathbf{E} \cdot \mathbf{a}_L$$

and the expenditure of energy is the product of the force and distance. That is, the differential work done by an external source moving charge Q is $dW = -Q\mathbf{E} \cdot \mathbf{a}_L dL$,

or
$$dW = -Q\mathbf{E} \cdot d\mathbf{L} \tag{2}$$

where we have replaced $\mathbf{a}_L dL$ by the simpler expression $d\mathbf{L}$.

This differential amount of work required may be zero under several conditions determined easily from Eq. (2). There are the trivial conditions for which \mathbf{E} , Q, or $d\mathbf{L}$ is zero, and a much more important case in which \mathbf{E} and $d\mathbf{L}$ are perpendicular. Here the charge is moved always in a direction at right angles to the electric field. We can draw on a good analogy between the electric field and the gravitational field, where, again, energy must be expended to move against the field. Sliding a mass around with constant velocity on a frictionless surface is an effortless process if the mass is moved along a constant elevation contour; positive or negative work must be done in moving it to a higher or lower elevation, respectively.

Returning to the charge in the electric field, the work required to move the charge a finite distance must be determined by integrating,

$$W = -Q \int_{\text{init}}^{\text{final}} \mathbf{E} \cdot d\mathbf{L}$$
 (3)

where the path must be specified before the integral can be evaluated. The charge is assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the following section to its interpretation and evaluation.

D4.1. Given the electric field $\mathbf{E} = \frac{1}{z^2} (8xyz\mathbf{a}_x + 4x^2z\mathbf{a}_y - 4x^2y\mathbf{a}_z)$ V/m, find the differential amount of work done in moving a 6-nC charge a distance of 2 m, starting at P(2, -2, 3) and proceeding in the direction $\mathbf{a}_L = (a) - \frac{6}{7}\mathbf{a}_x + \frac{3}{7}\mathbf{a}_y + \frac{2}{7}\mathbf{a}_z$; $(b) \frac{6}{7}\mathbf{a}_x - \frac{3}{7}\mathbf{a}_y - \frac{2}{7}\mathbf{a}_z$; $(c) \frac{3}{7}\mathbf{a}_x + \frac{6}{7}\mathbf{a}_y$.

Ans. −149.3 fJ; 149.3 fJ; 0

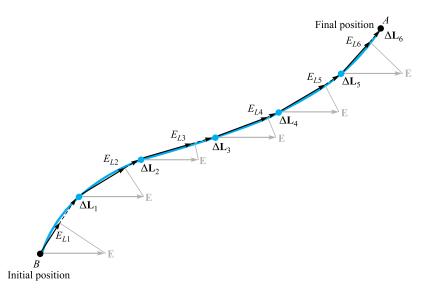
4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge Q from one position to another, Eq. (3), is an example of a line integral, which in vector-analysis notation always takes the form of the integral along some prescribed path of the dot product of a vector field and a differential vector path length $d\mathbf{L}$. Without using vector analysis we should have to write

$$W = -Q \int_{\text{init}}^{\text{final}} E_L \, dL$$

where E_L = component of **E** along d**L**.

A line integral is like many other integrals which appear in advanced analysis, including the surface integral appearing in Gauss's law, in that it is essentially descriptive. We like to look at it much more than we like to work it out. It tells us to choose a path, break it up into a large number of very small segments, multiply the component of the field along each segment by the length of the segment, and then add the results for all the segments. This is a summation, of course, and the integral is obtained exactly only when the number of segments becomes infinite.


This procedure is indicated in Figure 4.1, where a path has been chosen from an initial position B to a final position 1 A and a uniform electric field is selected for simplicity. The path is divided into six segments, $\Delta \mathbf{L}_1, \Delta \mathbf{L}_2, \ldots, \Delta \mathbf{L}_6$, and the components of \mathbf{E} along each segment are denoted by $E_{L1}, E_{L2}, \ldots, E_{L6}$. The work involved in moving a charge Q from B to A is then approximately

$$W = -Q(E_{L1}\Delta L_1 + E_{L2}\Delta L_2 + \dots + E_{L6}\Delta L_6)$$

or, using vector notation,

$$W = -Q(\mathbf{E}_1 \cdot \Delta \mathbf{L}_1 + \mathbf{E}_2 \cdot \Delta \mathbf{L}_2 + \dots + \mathbf{E}_6 \cdot \Delta \mathbf{L}_6)$$

 $^{^{1}}$ The final position is given the designation A to correspond with the convention for potential difference, as discussed in the following section.

Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line integral of **E** between points *B* and *A* is independent of the path selected, even in a nonuniform field; this result is not, in general, true for time-varying fields.

and because we have assumed a uniform field,

$$\mathbf{E}_1 = \mathbf{E}_2 = \dots = \mathbf{E}_6$$

$$W = -Q\mathbf{E} \cdot (\Delta \mathbf{L}_1 + \Delta \mathbf{L}_2 + \dots + \Delta \mathbf{L}_6)$$

What is this sum of vector segments in the preceding parentheses? Vectors add by the parallelogram law, and the sum is just the vector directed from the initial point B to the final point A, \mathbf{L}_{BA} . Therefore

$$W = -Q\mathbf{E} \cdot \mathbf{L}_{BA} \qquad \text{(uniform } \mathbf{E}) \tag{4}$$

Remembering the summation interpretation of the line integral, this result for the uniform field can be obtained rapidly now from the integral expression

$$W = -Q \int_{R}^{A} \mathbf{E} \cdot d\mathbf{L} \tag{5}$$

as applied to a uniform field

$$W = -Q\mathbf{E} \cdot \int_{R}^{A} d\mathbf{L}$$

where the last integral becomes \mathbf{L}_{BA} and

$$W = -Q\mathbf{E} \cdot \mathbf{L}_{BA} \qquad \text{(uniform } \mathbf{E}\text{)}$$

For this special case of a uniform electric field intensity, we should note that the work involved in moving the charge depends only on Q, \mathbf{E} , and \mathbf{L}_{BA} , a vector drawn from the initial to the final point of the path chosen. It does not depend on the particular path we have selected along which to carry the charge. We may proceed from B to A on a straight line or via the Old Chisholm Trail; the answer is the same. We show in Section 4.5 that an identical statement may be made for any nonuniform (static) \mathbf{E} field.

Let us use several examples to illustrate the mechanics of setting up the line integral appearing in Eq. (5).

EXAMPLE 4.1

We are given the nonuniform field

$$\mathbf{E} = y\mathbf{a}_x + x\mathbf{a}_y + 2\mathbf{a}_z$$

and we are asked to determine the work expended in carrying 2C from B(1, 0, 1) to A(0.8, 0.6, 1) along the shorter arc of the circle

$$x^2 + y^2 = 1$$
 $z = 1$

Solution. We use $W = -Q \int_B^A \mathbf{E} \cdot d\mathbf{L}$, where **E** is not necessarily constant. Working in rectangular coordinates, the differential path $d\mathbf{L}$ is $dx\mathbf{a}_x + dy\mathbf{a}_y + dz\mathbf{a}_z$, and the integral becomes

$$W = -Q \int_{B}^{A} \mathbf{E} \cdot d\mathbf{L}$$

$$= -2 \int_{B}^{A} (y\mathbf{a}_{x} + x\mathbf{a}_{y} + 2\mathbf{a}_{z}) \cdot (dx \, \mathbf{a}_{x} + dy \, \mathbf{a}_{y} + dz \, \mathbf{a}_{z})$$

$$= -2 \int_{1}^{0.8} y \, dx - 2 \int_{0}^{0.6} x \, dy - 4 \int_{1}^{1} dz$$

where the limits on the integrals have been chosen to agree with the initial and final values of the appropriate variable of integration. Using the equation of the circular path (and selecting the sign of the radical which is correct for the quadrant involved), we have

$$W = -2 \int_{1}^{0.8} \sqrt{1 - x^2} \, dx - 2 \int_{0}^{0.6} \sqrt{1 - y^2} \, dy - 0$$

$$= -\left[x\sqrt{1 - x^2} + \sin^{-1}x\right]_{1}^{0.8} - \left[y\sqrt{1 - y^2} + \sin^{-1}y\right]_{0}^{0.6}$$

$$= -(0.48 + 0.927 - 0 - 1.571) - (0.48 + 0.644 - 0 - 0)$$

$$= -0.96 \,\text{J}$$

EXAMPLE 4.2

Again find the work required to carry 2C from B to A in the same field, but this time use the straight-line path from B to A.

Solution. We start by determining the equations of the straight line. Any two of the following three equations for planes passing through the line are sufficient to define the line:

$$y - y_B = \frac{y_A - y_B}{x_A - x_B}(x - x_B)$$

$$z - z_B = \frac{z_A - z_B}{y_A - y_B}(y - y_B)$$

$$x - x_B = \frac{x_A - x_B}{z_A - z_B}(z - z_B)$$

From the first equation we have

$$y = -3(x - 1)$$

and from the second we obtain

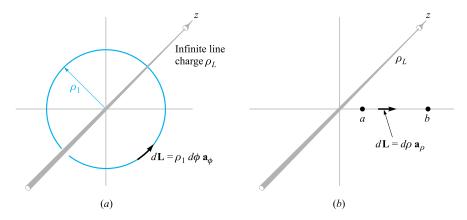
$$z = 1$$

Thus,

$$W = -2\int_{1}^{0.8} y \, dx - 2\int_{0}^{0.6} x \, dy - 4\int_{1}^{1} dz$$
$$= 6\int_{1}^{0.8} (x - 1) \, dx - 2\int_{0}^{0.6} \left(1 - \frac{y}{3}\right) \, dy$$
$$= -0.96 \, \text{J}$$

This is the same answer we found using the circular path between the same two points, and it again demonstrates the statement (unproved) that the work done is independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show that dy = -3 dx and $dx = -\frac{1}{3} dy$. These substitutions may be made in the first two integrals, along with a change in limits, and the answer may be obtained by evaluating the new integrals. This method is often simpler if the integrand is a function of only one variable.


Note that the expressions for $d\mathbf{L}$ in our three coordinate systems use the differential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in Section 1.8, and spherical in Section 1.9):

$$d\mathbf{L} = dx \, \mathbf{a}_x + dy \, \mathbf{a}_y + dz \, \mathbf{a}_z \qquad \text{(rectangular)}$$

$$d\mathbf{L} = d\rho \,\mathbf{a}_{\rho} + \rho \,d\phi \,\mathbf{a}_{\phi} + dz \,\mathbf{a}_{z} \qquad \text{(cylindrical)}$$

$$d\mathbf{L} = dr \,\mathbf{a}_r + r \,d\theta \,\mathbf{a}_\theta + r \sin\theta \,d\phi \,\mathbf{a}_\phi \quad \text{(spherical)}$$

The interrelationships among the several variables in each expression are determined from the specific equations for the path.

Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried in the field of an infinite line charge. No work is expected in the former case.

As a final example illustrating the evaluation of the line integral, we investigate several paths that we might take near an infinite line charge. The field has been obtained several times and is entirely in the radial direction,

$$\mathbf{E} = E_{\rho} \mathbf{a}_{\rho} = \frac{\rho_L}{2\pi\epsilon_0 \rho} \mathbf{a}_{\rho}$$

First we find the work done in carrying the positive charge Q about a circular path of radius ρ_b centered at the line charge, as illustrated in Figure 4.2a. Without lifting a pencil, we see that the work must be nil, for the path is always perpendicular to the electric field intensity, or the force on the charge is always exerted at right angles to the direction in which we are moving it. For practice, however, we will set up the integral and obtain the answer.

The differential element $d\mathbf{L}$ is chosen in cylindrical coordinates, and the circular path selected demands that $d\rho$ and dz be zero, so $d\mathbf{L} = \rho_1 d\phi \mathbf{a}_{\phi}$. The work is then

$$W = -Q \int_{\text{init}}^{\text{final}} \frac{\rho_L}{2\pi \epsilon_0 \rho_1} \mathbf{a}_{\rho} \cdot \rho_1 \, d\phi \, \mathbf{a}_{\phi}$$
$$= -Q \int_0^{2\pi} \frac{\rho_L}{2\pi \epsilon_0} d\phi \, \mathbf{a}_{\rho} \cdot \mathbf{a}_{\phi} = 0$$

We will now carry the charge from $\rho=a$ to $\rho=b$ along a radial path (Figure 4.2b). Here $d{\bf L}=d\rho\,{\bf a}_\rho$ and

$$W = -Q \int_{\text{init}}^{\text{final}} \frac{\rho_L}{2\pi\epsilon_0 \rho} \mathbf{a}_{\rho} \cdot d\rho \, \mathbf{a}_{\rho} = -Q \int_a^b \frac{\rho_L}{2\pi\epsilon_0} \, \frac{d\,\rho}{\rho}$$

or

$$W = -\frac{Q\rho_L}{2\pi\epsilon_0} \ln \frac{b}{a}$$

Because b is larger than a, $\ln(b/a)$ is positive, and the work done is negative, indicating that the external source that is moving the charge receives energy.

One of the pitfalls in evaluating line integrals is a tendency to use too many minus signs when a charge is moved in the direction of a *decreasing* coordinate value. This is taken care of completely by the limits on the integral, and no misguided attempt should be made to change the sign of $d\mathbf{L}$. Suppose we carry Q from b to a (Figure 4.2b). We still have $d\mathbf{L} = d\rho \, \mathbf{a}_{\rho}$ and show the different direction by recognizing $\rho = b$ as the initial point and $\rho = a$ as the final point,

$$W = -Q \int_{b}^{a} \frac{\rho_{L}}{2\pi\epsilon_{0}} \frac{d\rho}{\rho} = \frac{Q\rho_{L}}{2\pi\epsilon_{0}} \ln \frac{b}{a}$$

This is the negative of the previous answer and is obviously correct.

D4.2. Calculate the work done in moving a 4-C charge from B(1, 0, 0) to A(0, 2, 0) along the path y = 2 - 2x, z = 0 in the field $\mathbf{E} = (a) 5\mathbf{a}_x \text{V/m}$; $(b) 5x\mathbf{a}_x \text{V/m}$; $(c) 5x\mathbf{a}_x + 5y\mathbf{a}_y \text{V/m}$.

Ans. 20 J; 10 J; −30 J

D4.3. We will see later that a time-varying **E** field need not be conservative. (If it is not conservative, the work expressed by Eq. (3) may be a function of the path used.) Let $\mathbf{E} = y\mathbf{a}_x \text{ V/m}$ at a certain instant of time, and calculate the work required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line segments joining: (a) (1, 3, 5) to (2, 3, 5) to (2, 0, 5) to (2, 0, 3); (b) (1, 3, 5) to (1, 3, 3) to (1, 0, 3) to (2, 0, 3).

Ans. -9 J; 0

4.3 DEFINITION OF POTENTIAL DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done by an external source in moving a charge Q from one point to another in an electric field \mathbf{E} , "Potential difference and work."

$$W = -Q \int_{\text{init}}^{\text{final}} \mathbf{E} \cdot d\mathbf{L}$$

In much the same way as we defined the electric field intensity as the force on a *unit* test charge, we now define *potential difference V* as the work done (by an external source) in moving a *unit* positive charge from one point to another in an electric field,

Potential difference =
$$V = -\int_{\text{init}}^{\text{final}} \mathbf{E} \cdot d\mathbf{L}$$
 (9)

We have to agree on the direction of movement, and we do this by stating that V_{AB} signifies the potential difference between points A and B and is the work done in moving the unit charge from B (last named) to A (first named). Thus, in determining V_{AB} , B is the initial point and A is the final point. The reason for this somewhat peculiar definition will become clearer shortly, when it is seen that the initial point B is often taken at infinity, whereas the final point A represents the fixed position of the charge; point A is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is defined as a more common unit, abbreviated as V. Hence the potential difference between points A and B is

$$V_{AB} = -\int_{B}^{A} \mathbf{E} \cdot d\mathbf{L} \, \mathbf{V} \tag{10}$$

and V_{AB} is positive if work is done in carrying the positive charge from B to A.

From the line-charge example of Section 4.2 we found that the work done in taking a charge Q from $\rho = b$ to $\rho = a$ was

$$W = \frac{Q\rho_L}{2\pi\epsilon_0} \ln \frac{b}{a}$$

Thus, the potential difference between points at $\rho = a$ and $\rho = b$ is

$$V_{ab} = \frac{W}{Q} = \frac{\rho_L}{2\pi\epsilon_0} \ln \frac{b}{a} \tag{11}$$

We can try out this definition by finding the potential difference between points A and B at radial distances r_A and r_B from a point charge Q. Choosing an origin at Q,

$$\mathbf{E} = E_r \mathbf{a}_r = \frac{Q}{4\pi\epsilon_0 r^2} \mathbf{a}_r$$

and

$$d\mathbf{L} = dr \, \mathbf{a}_r$$

we have

$$V_{AB} = -\int_{B}^{A} \mathbf{E} \cdot d\mathbf{L} = -\int_{r_{B}}^{r_{A}} \frac{Q}{4\pi\epsilon_{0}r^{2}} dr = \frac{Q}{4\pi\epsilon_{0}} \left(\frac{1}{r_{A}} - \frac{1}{r_{B}}\right)$$
(12)

If $r_B > r_A$, the potential difference V_{AB} is positive, indicating that energy is expended by the external source in bringing the positive charge from r_B to r_A . This agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the *potential*, or *absolute potential*, of a point, rather than the potential difference between two points, but this means only that we agree to measure every potential difference with respect to a specified reference point that we consider to have zero potential. Common agreement must be reached on the zero reference before a statement of the potential has any significance. A person having one hand on the deflection plates of a cathode-ray tube that are "at a potential of 50 V" and the other hand on the cathode terminal would probably be too shaken up

to understand that the cathode is not the zero reference, but that all potentials in that circuit are customarily measured with respect to the metallic shield about the tube. The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical potential measurements is "ground," by which we mean the potential of the surface region of the earth itself. Theoretically, we usually represent this surface by an infinite plane at zero potential, although some large-scale problems, such as those involving propagation across the Atlantic Ocean, require a spherical surface at zero potential.

Another widely used reference "point" is infinity. This usually appears in theoretical problems approximating a physical situation in which the earth is relatively far removed from the region in which we are interested, such as the static field near the wing tip of an airplane that has acquired a charge in flying through a thunderhead, or the field inside an atom. Working with the *gravitational* potential field on earth, the zero reference is normally taken at sea level; for an interplanetary mission, however, the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero reference when cylindrical symmetry is present and infinity proves inconvenient. In a coaxial cable the outer conductor is selected as the zero reference for potential. And, of course, there are numerous special problems, such as those for which a two-sheeted hyperboloid or an oblate spheroid must be selected as the zero-potential reference, but these need not concern us immediately.

If the potential at point A is V_A and that at B is V_B , then

$$V_{AB} = V_A - V_B \tag{13}$$

where we necessarily agree that V_A and V_B shall have the same zero reference point.

D4.4. An electric field is expressed in rectangular coordinates by $\mathbf{E} = 6x^2\mathbf{a}_x + 6y\mathbf{a}_y + 4\mathbf{a}_zV/m$. Find: (a) V_{MN} if points M and N are specified by M(2, 6, -1) and N(-3, -3, 2); (b) V_M if V = 0 at Q(4, -2, -35); (c) V_N if V = 2 at P(1, 2, -4).

Ans. -139.0 V; -120.0 V; 19.0 V

4.4 THE POTENTIAL FIELD OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between two points located at $r = r_A$ and $r = r_B$ in the field of a point charge Q placed at the origin. How might we conveniently define a zero reference for potential? The simplest possibility is to let V = 0 at infinity. If we let the point at $r = r_B$ recede to infinity, the potential at r_A becomes

$$V_A = \frac{Q}{4\pi\epsilon_0 r_A}$$

or, as there is no reason to identify this point with the A subscript,

$$V = \frac{Q}{4\pi\epsilon_0 r} \tag{14}$$

This expression defines the potential at any point distant r from a point charge Q at the origin, the potential at infinite radius being taken as the zero reference. Returning to a physical interpretation, we may say that $Q/4\pi\epsilon_0 r$ joules of work must be done in carrying a unit charge from infinity to any point r meters from the charge Q.

A convenient method to express the potential without selecting a specific zero reference entails identifying r_A as r once again and letting $Q/4\pi\,\epsilon_0 r_B$ be a constant. Then

$$V = \frac{Q}{4\pi\epsilon_0 r} + C_1 \tag{15}$$

and C_1 may be selected so that V = 0 at any desired value of r. We could also select the zero reference indirectly by electing to let V be V_0 at $r = r_0$.

It should be noted that the *potential difference* between two points is not a function of C_1 .

Equations (14) and (15) represent the potential field of a point charge. The potential is a scalar field and does not involve any unit vectors.

We now define an *equipotential surface* as a surface composed of all those points having the same value of potential. All field lines would be perpendicular to such a surface at the points where they intersect it. Therefore, no work is involved in moving a unit charge around on an equipotential surface. The equipotential surfaces in the potential field of a point charge are spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that it is an inverse-distance field, whereas the electric field intensity was found to be an inverse-square-law function. A similar result occurs for the gravitational force field of a point mass (inverse-square law) and the gravitational potential field (inverse distance). The gravitational force exerted by the earth on an object one million miles from it is four times that exerted on the same object two million miles away. The kinetic energy given to a freely falling object starting from the end of the universe with zero velocity, however, is only twice as much at one million miles as it is at two million miles.

D4.5. A 15-nC point charge is at the origin in free space. Calculate V_1 if point P_1 is located at $P_1(-2, 3, -1)$ and (a) V = 0 at (6, 5, 4); (b) V = 0 at infinity; (c) V = 5 V at (2, 0, 4).

Ans. 20.67 V: 36.0 V: 10.89 V

4.5 THE POTENTIAL FIELD OF A SYSTEM OF CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive charge from the zero reference to the point, and we have suspected that this work, and hence the potential, is independent of the path taken. If it were not, potential would not be a very useful concept.

Let us now prove our assertion. We do so by beginning with the potential field of the single point charge for which we showed, in Section 4.4, the independence with regard to the path, noting that the field is linear with respect to charge so that superposition is applicable. It will then follow that the potential of a system of charges has a value at any point which is independent of the path taken in carrying the test charge to that point.

Thus the potential field of a single point charge, which we shall identify as Q_1 and locate at \mathbf{r}_1 , involves only the distance $|\mathbf{r} - \mathbf{r}_1|$ from Q_1 to the point at \mathbf{r} where we are establishing the value of the potential. For a zero reference at infinity, we have

$$V(\mathbf{r}) = \frac{Q_1}{4\pi\epsilon_0|\mathbf{r} - \mathbf{r}_1|}$$

The potential arising from two charges, Q_1 at \mathbf{r}_1 and Q_2 at \mathbf{r}_2 , is a function only of $|\mathbf{r} - \mathbf{r}_1|$ and $|\mathbf{r} - \mathbf{r}_2|$, the distances from Q_1 and Q_2 to the field point, respectively.

$$V(\mathbf{r}) = \frac{Q_1}{4\pi\epsilon_0|\mathbf{r} - \mathbf{r}_1|} + \frac{Q_2}{4\pi\epsilon_0|\mathbf{r} - \mathbf{r}_2|}$$

Continuing to add charges, we find that the potential arising from n point charges is

$$V(\mathbf{r}) = \sum_{m=1}^{n} \frac{Q_m}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}_m|}$$
 (16)

If each point charge is now represented as a small element of a continuous volume charge distribution $\rho_{\nu}\Delta\nu$, then

$$V(\mathbf{r}) = \frac{\rho_{\nu}(\mathbf{r}_1)\Delta\nu_1}{4\pi\epsilon_0|\mathbf{r} - \mathbf{r}_1|} + \frac{\rho_{\nu}(\mathbf{r}_2)\Delta\nu_2}{4\pi\epsilon_0|\mathbf{r} - \mathbf{r}_2|} + \dots + \frac{\rho_{\nu}(\mathbf{r}_n)\Delta\nu_n}{4\pi\epsilon_0|\mathbf{r} - \mathbf{r}_n|}$$

As we allow the number of elements to become infinite, we obtain the integral expression

$$V(\mathbf{r}) = \int_{\text{vol}} \frac{\rho_{\nu}(\mathbf{r}') \, d\nu'}{4\pi \, \epsilon_0 |\mathbf{r} - \mathbf{r}'|} \tag{17}$$

We have come quite a distance from the potential field of the single point charge, and it might be helpful to examine Eq. (17) and refresh ourselves as to the meaning of each term. The potential $V(\mathbf{r})$ is determined with respect to a zero reference potential at infinity and is an exact measure of the work done in bringing a unit charge from

infinity to the field point at \mathbf{r} where we are finding the potential. The volume charge density $\rho_{\nu}(\mathbf{r}')$ and differential volume element dv' combine to represent a differential amount of charge $\rho_{\nu}(\mathbf{r}') dv'$ located at \mathbf{r}' . The distance $|\mathbf{r} - \mathbf{r}'|$ is that distance from the source point to the field point. The integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface charge, the integration is along the line or over the surface:

$$V(\mathbf{r}) = \int \frac{\rho_L(\mathbf{r}') dL'}{4\pi \epsilon_0 |\mathbf{r} - \mathbf{r}'|}$$
(18)

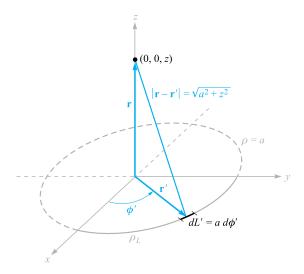
$$V(\mathbf{r}) = \int_{S} \frac{\rho_{S}(\mathbf{r}') dS'}{4\pi \epsilon_{0} |\mathbf{r} - \mathbf{r}'|}$$
(19)

The most general expression for potential is obtained by combining Eqs. (16)–(19). These integral expressions for potential in terms of the charge distribution should be compared with similar expressions for the electric field intensity, such as Eq. (15) in Section 2.3:

$$\mathbf{E}(\mathbf{r}) = \int_{\text{vol}} \frac{\rho_{\nu}(\mathbf{r}') \, d\nu'}{4\pi \, \epsilon_0 |\mathbf{r} - \mathbf{r}'|^2} \, \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

The potential again is inverse distance, and the electric field intensity, inverse-square law. The latter, of course, is also a vector field.

EXAMPLE 4.3


To illustrate the use of one of these potential integrals, we will find V on the z axis for a uniform line charge ρ_L in the form of a ring, $\rho = a$, in the z = 0 plane, as shown in Figure 4.3.

Solution. Working with Eq. (18), we have $dL' = ad\phi'$, $\mathbf{r} = z\mathbf{a}_z$, $\mathbf{r}' = a\mathbf{a}_\rho$, $|\mathbf{r} - \mathbf{r}'| = \sqrt{a^2 + z^2}$, and

$$V = \int_0^{2\pi} \frac{\rho_L a \, d\phi'}{4\pi \epsilon_0 \sqrt{a^2 + z^2}} = \frac{\rho_L a}{2\epsilon_0 \sqrt{a^2 + z^2}}$$

For a zero reference at infinity, then:

- 1. The potential arising from a single point charge is the work done in carrying a unit positive charge from infinity to the point at which we desire the potential, and the work is independent of the path chosen between those two points.
- 2. The potential field in the presence of a number of point charges is the sum of the individual potential fields arising from each charge.
- 3. The potential arising from a number of point charges or any continuous charge distribution may therefore be found by carrying a unit charge from infinity to the point in question along any path we choose.

Figure 4.3 The potential field of a ring of uniform line charge density is easily obtained from $V = \int \rho_L(\mathbf{r}') dL'/(4\pi\epsilon_0|\mathbf{r}-\mathbf{r}'|)$.

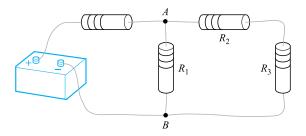
In other words, the expression for potential (zero reference at infinity),

$$V_A = -\int_{-\infty}^A \mathbf{E} \cdot d\mathbf{L}$$

or potential difference,

$$V_{AB} = V_A - V_B = -\int_B^A \mathbf{E} \cdot d\mathbf{L}$$

is not dependent on the path chosen for the line integral, regardless of the source of the E field.


This result is often stated concisely by recognizing that no work is done in carrying the unit charge around any *closed path*, or

$$\oint \mathbf{E} \cdot d\mathbf{L} = 0 \tag{20}$$

A small circle is placed on the integral sign to indicate the closed nature of the path. This symbol also appeared in the formulation of Gauss's law, where a closed *surface* integral was used.

Equation (20) is true for *static* fields, but we will see in Chapter 9 that Faraday demonstrated it was incomplete when time-varying magnetic fields were present. One of Maxwell's greatest contributions to electromagnetic theory was in showing that a time-varying electric field produces a magnetic field, and therefore we should expect to find later that Eq. (20) is not correct when either **E** or the magnetic field varies with time.

Restricting our attention to the static case where \mathbf{E} does not change with time, consider the dc circuit shown in Figure 4.4. Two points, A and B, are marked, and

Figure 4.4 A simple dc-circuit problem that must be solved by applying $\oint \mathbf{E} \cdot d\mathbf{L} = 0$ in the form of Kirchhoff's voltage law.

(20) states that no work is involved in carrying a unit charge from A through R_2 and R_3 to B and back to A through R_1 , or that the sum of the potential differences around any closed path is zero.

Equation (20) is therefore just a more general form of Kirchhoff's circuital law for voltages, more general in that we can apply it to any region where an electric field exists and we are not restricted to a conventional circuit composed of wires, resistances, and batteries. Equation (20) must be amended before we can apply it to time-varying fields.

Any field that satisfies an equation of the form of Eq. (20), (i.e., where the closed line integral of the field is zero) is said to be a *conservative field*. The name arises from the fact that no work is done (or that energy is *conserved*) around a closed path. The gravitational field is also conservative, for any energy expended in moving (raising) an object against the field is recovered exactly when the object is returned (lowered) to its original position. A nonconservative gravitational field could solve our energy problems forever.

Given a *nonconservative* field, it is of course possible that the line integral may be zero for certain closed paths. For example, consider the force field, $\mathbf{F} = \sin \pi \rho \, \mathbf{a}_{\phi}$. Around a circular path of radius $\rho = \rho_1$, we have $d\mathbf{L} = \rho \, d\phi \, \mathbf{a}_{\phi}$, and

$$\oint \mathbf{F} \cdot d\mathbf{L} = \int_0^{2\pi} \sin \pi \rho_1 \mathbf{a}_\phi \cdot \rho_1 d\phi \, \mathbf{a}_\phi = \int_0^{2\pi} \rho_1 \sin \pi \rho_1 \, d\phi$$

$$= 2\pi \rho_1 \sin \pi \rho_1$$

The integral is zero if $\rho_1 = 1, 2, 3, \dots$, etc., but it is not zero for other values of ρ_1 , or for most other closed paths, and the given field is not conservative. A conservative field must yield a zero value for the line integral around every possible closed path.

D4.6. If we take the zero reference for potential at infinity, find the potential at (0, 0, 2) caused by this charge configuration in free space (a) 12 nC/m on the line $\rho = 2.5$ m, z = 0; (b) point charge of 18 nC at (1, 2, -1); (c) 12 nC/m on the line y = 2.5, z = 0, -1.0 < x < 1.0.

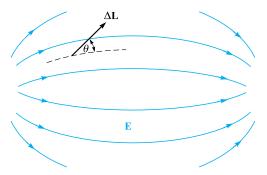
Ans. 529 V; 43.2 V; 66.3 V

4.6 POTENTIAL GRADIENT

We now have two methods of determining potential, one directly from the electric field intensity by means of a line integral, and another from the basic charge distribution itself by a volume integral. Neither method is very helpful in determining the fields in most practical problems, however, for as we will see later, neither the electric field intensity nor the charge distribution is very often known. Preliminary information is much more apt to consist of a description of two equipotential surfaces, such as the statement that we have two parallel conductors of circular cross section at potentials of 100 and -100 V. Perhaps we wish to find the capacitance between the conductors, or the charge and current distribution on the conductors from which losses may be calculated.

These quantities may be easily obtained from the potential field, and our immediate goal will be a simple method of finding the electric field intensity from the potential.

We already have the general line-integral relationship between these quantities,


$$V = -\int \mathbf{E} \cdot d\mathbf{L} \tag{21}$$

but this is much easier to use in the reverse direction: given \mathbf{E} , find V.

However, Eq. (21) may be applied to a very short element of length $\Delta \mathbf{L}$ along which \mathbf{E} is essentially constant, leading to an incremental potential difference ΔV ,

$$\Delta V \doteq -\mathbf{E} \cdot \Delta \mathbf{L} \tag{22}$$

Now consider a general region of space, as shown in Figure 4.5, in which **E** and V both change as we move from point to point. Equation (22) tells us to choose an incremental vector element of length $\Delta \mathbf{L} = \Delta L \, \mathbf{a}_L$ and multiply its magnitude by

Figure 4.5 A vector incremental element of length ΔL is shown making an angle of θ with an E field, indicated by its streamlines. The sources of the field are not shown.

the component of **E** in the direction of \mathbf{a}_L (one interpretation of the dot product) to obtain the small potential difference between the final and initial points of $\Delta \mathbf{L}$.

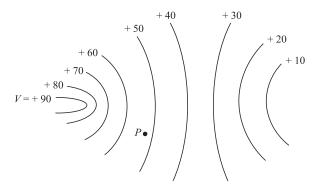
If we designate the angle between $\Delta \mathbf{L}$ and \mathbf{E} as θ , then

$$\Delta V \doteq -E\Delta L \cos\theta$$

We now pass to the limit and consider the derivative dV/dL. To do this, we need to show that V may be interpreted as a *function* V(x, y, z). So far, V is merely the result of the line integral (21). If we assume a specified starting point or zero reference and then let our end point be (x, y, z), we know that the result of the integration is a unique function of the end point (x, y, z) because E is a conservative field. Therefore V is a single-valued function V(x, y, z). We may then pass to the limit and obtain

$$\frac{dV}{dL} = -E\cos\theta$$

In which direction should $\Delta \mathbf{L}$ be placed to obtain a maximum value of ΔV ? Remember that \mathbf{E} is a definite value at the point at which we are working and is independent of the direction of $\Delta \mathbf{L}$. The magnitude ΔL is also constant, and our variable is \mathbf{a}_L , the unit vector showing the direction of $\Delta \mathbf{L}$. It is obvious that the maximum positive increment of potential, ΔV_{max} , will occur when $\cos \theta$ is -1, or $\Delta \mathbf{L}$ points in the direction *opposite* to \mathbf{E} . For this condition,


$$\left. \frac{dV}{dL} \right|_{\text{max}} = E$$

This little exercise shows us two characteristics of the relationship between \mathbf{E} and V at any point:

- 1. The magnitude of the electric field intensity is given by the maximum value of the rate of change of potential with distance.
- 2. This maximum value is obtained when the direction of the distance increment is opposite to **E** or, in other words, the direction of **E** is *opposite* to the direction in which the potential is *increasing* the most rapidly.

We now illustrate these relationships in terms of potential. Figure 4.6 is intended to show the information we have been given about some potential field. It does this by showing the equipotential surfaces (shown as lines in the two-dimensional sketch). We desire information about the electric field intensity at point P. Starting at P, we lay off a small incremental distance $\Delta \mathbf{L}$ in various directions, hunting for that direction in which the potential is changing (increasing) the most rapidly. From the sketch, this direction appears to be left and slightly upward. From our second characteristic above, the electric field intensity is therefore oppositely directed, or to the right and slightly downward at P. Its magnitude is given by dividing the small increase in potential by the small element of length.

It seems likely that the direction in which the potential is increasing the most rapidly is perpendicular to the equipotentials (in the direction of *increasing* potential), and this is correct, for if $\Delta \mathbf{L}$ is directed along an equipotential, $\Delta V = 0$ by our

Figure 4.6 A potential field is shown by its equipotential surfaces. At any point the E field is normal to the equipotential surface passing through that point and is directed toward the more negative surfaces.

definition of an equipotential surface. But then

$$\Delta V = -\mathbf{E} \cdot \Delta \mathbf{L} = 0$$

and as neither E nor ΔL is zero, E must be perpendicular to this ΔL or perpendicular to the equipotentials.

Because the potential field information is more likely to be determined first, let us describe the direction of $\Delta \mathbf{L}$, which leads to a maximum increase in potential mathematically in terms of the potential field rather than the electric field intensity. We do this by letting \mathbf{a}_N be a unit vector normal to the equipotential surface and directed toward the higher potentials. The electric field intensity is then expressed in terms of the potential,

$$\mathbf{E} = -\frac{dV}{dL}\Big|_{\text{max}} \mathbf{a}_N \tag{23}$$

which shows that the magnitude of E is given by the maximum space rate of change of V and the direction of E is *normal* to the equipotential surface (in the direction of *decreasing* potential).

Because $dV/dL|_{\text{max}}$ occurs when $\Delta \mathbf{L}$ is in the direction of \mathbf{a}_N , we may remind ourselves of this fact by letting

$$\left. \frac{dV}{dL} \right|_{\text{max}} = \frac{dV}{dN}$$

and

$$\mathbf{E} = -\frac{dV}{dN}\mathbf{a}_N \tag{24}$$

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process of finding the electric field intensity from the potential. Both are descriptive of a general procedure, and we do not intend to use them directly to obtain quantitative information.

This procedure leading from V to \mathbf{E} is not unique to this pair of quantities, however, but has appeared as the relationship between a scalar and a vector field in hydraulics, thermodynamics, and magnetics, and indeed in almost every field to which vector analysis has been applied.

The operation on V by which $-\mathbf{E}$ is obtained is known as the *gradient*, and the gradient of a scalar field T is defined as

Gradient of
$$T = \text{grad } T = \frac{dT}{dN} \mathbf{a}_N$$
 (25)

where \mathbf{a}_N is a unit vector normal to the equipotential surfaces, and that normal is chosen, which points in the direction of increasing values of T.

Using this new term, we now may write the relationship between V and E as

$$\mathbf{E} = -\operatorname{grad} V \tag{26}$$

Because we have shown that V is a unique function of x, y, and z, we may take its total differential

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz$$

But we also have

$$dV = -\mathbf{E} \cdot d\mathbf{L} = -E_x \, dx - E_y \, dy - E_z \, dz$$

Because both expressions are true for any dx, dy, and dz, then

$$E_x = -\frac{\partial V}{\partial x}$$

$$E_y = -\frac{\partial V}{\partial y}$$

$$E_z = -\frac{\partial V}{\partial z}$$

These results may be combined vectorially to yield

$$\mathbf{E} = -\left(\frac{\partial V}{\partial x}\mathbf{a}_x + \frac{\partial V}{\partial y}\mathbf{a}_y + \frac{\partial V}{\partial z}\mathbf{a}_z\right)$$
 (27)

and comparing Eqs. (26) and (27) provides us with an expression which may be used to evaluate the gradient in rectangular coordinates,

grad
$$V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z$$
 (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors that are often incorrectly added to the divergence expression appear to be those that

were incorrectly removed from the gradient. Once the physical interpretation of the gradient, expressed by Eq. (25), is grasped as showing the maximum space rate of change of a scalar quantity and *the direction in which this maximum occurs*, the vector nature of the gradient should be self-evident.

The vector operator

$$\nabla = \frac{\partial}{\partial x} \mathbf{a}_x + \frac{\partial}{\partial y} \mathbf{a}_y + \frac{\partial}{\partial z} \mathbf{a}_z$$

may be used formally as an operator on a scalar, T, ∇T , producing

$$\nabla T = \frac{\partial T}{\partial x} \mathbf{a}_x + \frac{\partial T}{\partial y} \mathbf{a}_y + \frac{\partial T}{\partial z} \mathbf{a}_z$$

from which we see that

$$\nabla T = \operatorname{grad} T$$

This allows us to use a very compact expression to relate \mathbf{E} and V,

$$\mathbf{E} = -\nabla V \tag{29}$$

The gradient may be expressed in terms of partial derivatives in other coordinate systems through the application of its definition Eq. (25). These expressions are derived in Appendix A and repeated here for convenience when dealing with problems having cylindrical or spherical symmetry. They also appear inside the back cover.

$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z \quad \text{(rectangular)}$$

$$\nabla V = \frac{\partial V}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial V}{\partial z} \mathbf{a}_{z} \quad \text{(cylindrical)}$$

$$\nabla V = \frac{\partial V}{\partial r} \mathbf{a}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} \quad \text{(spherical)}$$

Note that the denominator of each term has the form of one of the components of $d\mathbf{L}$ in that coordinate system, except that partial differentials replace ordinary differentials; for example, $r \sin \theta \ d\phi$ becomes $r \sin \theta \ \partial \phi$.

We now illustrate the gradient concept with an example.

EXAMPLE 4.4

Given the potential field, $V = 2x^2y - 5z$, and a point P(-4, 3, 6), we wish to find several numerical values at point P: the potential V, the electric field intensity \mathbf{E} , the direction of \mathbf{E} , the electric flux density \mathbf{D} , and the volume charge density ρ_v .

Solution. The potential at P(-4, 5, 6) is

$$V_P = 2(-4)^2(3) - 5(6) = 66 \text{ V}$$

Next, we may use the gradient operation to obtain the electric field intensity,

$$\mathbf{E} = -\nabla V = -4xy\mathbf{a}_x - 2x^2\mathbf{a}_y + 5\mathbf{a}_z \text{ V/m}$$

The value of \mathbf{E} at point P is

$$\mathbf{E}_P = 48\mathbf{a}_x - 32\mathbf{a}_y + 5\mathbf{a}_z \text{ V/m}$$

and

$$|\mathbf{E}_P| = \sqrt{48^2 + (-32)^2 + 5^2} = 57.9 \text{ V/m}$$

The direction of \mathbf{E} at P is given by the unit vector

$$\mathbf{a}_{E,P} = (48\mathbf{a}_x - 32\mathbf{a}_y + 5\mathbf{a}_z)/57.9$$

= 0.829\mathbf{a}_x - 0.553\mathbf{a}_y + 0.086\mathbf{a}_z

If we assume these fields exist in free space, then

$$\mathbf{D} = \epsilon_0 \mathbf{E} = -35.4 xy \, \mathbf{a}_x - 17.71 x^2 \, \mathbf{a}_y + 44.3 \, \mathbf{a}_z \, \text{pC/m}^3$$

Finally, we may use the divergence relationship to find the volume charge density that is the source of the given potential field,

$$\rho_{\nu} = \nabla \cdot \mathbf{D} = -35.4 \text{y pC/m}^3$$

At
$$P$$
, $\rho_{\nu} = -106.2 \text{ pC/m}^3$.

D4.7. A portion of a two-dimensional ($E_z = 0$) potential field is shown in Figure 4.7. The grid lines are 1 mm apart in the actual field. Determine approximate values for **E** in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans.
$$-1075a_y$$
 V/m; $-600a_x - 700a_y$ V/m; $-500a_x - 650a_y$ V/m

D4.8. Given the potential field in cylindrical coordinates, $V = \frac{100}{z^2 + 1} \rho \cos \phi V$, and point P at $\rho = 3$ m, $\phi = 60^\circ$, z = 2 m, find values at P for (a) V; (b) E; (c) E; (d) dV/dN; (e) \mathbf{a}_N ; (f) ρ_V in free space.

Ans. 30.0 V; $-10.00\mathbf{a}_{\rho}+17.3\mathbf{a}_{\phi}+24.0\mathbf{a}_{z}$ V/m; 31.2 V/m; 31.2 V/m; 0.32 $\mathbf{a}_{\rho}-0.55\mathbf{a}_{\phi}-0.77\mathbf{a}_{z}$; -234 pC/m³

4.7 THE ELECTRIC DIPOLE

The dipole fields that we develop in this section are quite important because they form the basis for the behavior of dielectric materials in electric fields, as discussed in Chapter 6, as well as justifying the use of images, as described in Section 5.5 of Chapter 5. Moreover, this development will serve to illustrate the importance of the potential concept presented in this chapter.

An *electric dipole*, or simply a *dipole*, is the name given to two point charges of equal magnitude and opposite sign, separated by a distance that is small compared to

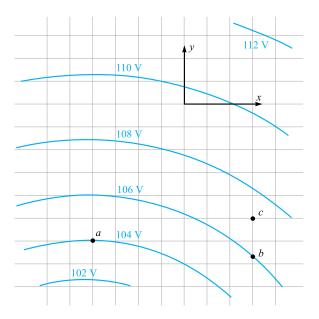
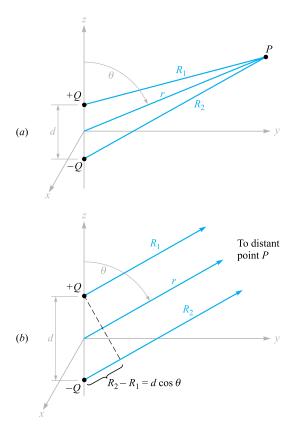


Figure 4.7 See Problem D4.7.

the distance to the point P at which we want to know the electric and potential fields. The dipole is shown in Figure 4.8a. The distant point P is described by the spherical coordinates r, θ , and $\phi = 90^{\circ}$, in view of the azimuthal symmetry. The positive and negative point charges have separation d and rectangular coordinates $(0, 0, \frac{1}{2}d)$ and $(0, 0, -\frac{1}{2}d)$, respectively.


So much for the geometry. What would we do next? Should we find the total electric field intensity by adding the known fields of each point charge? Would it be easier to find the total potential field first? In either case, having found one, we will find the other from it before calling the problem solved.

If we choose to find ${\bf E}$ first, we will have two components to keep track of in spherical coordinates (symmetry shows E_ϕ is zero), and then the only way to find V from ${\bf E}$ is by use of the line integral. This last step includes establishing a suitable zero reference for potential, since the line integral gives us only the potential difference between the two points at the ends of the integral path.

On the other hand, the determination of V first is a much simpler problem. This is because we find the potential as a function of position by simply adding the scalar potentials from the two charges. The position-dependent vector magnitude and direction of \mathbf{E} are subsequently evaluated with relative ease by taking the negative gradient of V.

Choosing this simpler method, we let the distances from Q and -Q to P be R_1 and R_2 , respectively, and write the total potential as

$$V = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{Q}{4\pi\epsilon_0} \frac{R_2 - R_1}{R_1 R_2}$$

Figure 4.8 (a) The geometry of the problem of an electric dipole. The dipole moment p=Qd is in the \mathbf{a}_2 direction. (b) For a distant point P, R_1 is essentially parallel to R_2 , and we find that $R_2-R_1=d\cos\theta$.

Note that the plane z = 0, midway between the two point charges, is the locus of points for which $R_1 = R_2$, and is therefore at zero potential, as are all points at infinity.

For a distant point, $R_1 \doteq R_2$, and the R_1R_2 product in the denominator may be replaced by r^2 . The approximation may not be made in the numerator, however, without obtaining the trivial answer that the potential field approaches zero as we go very far away from the dipole. Coming back a little closer to the dipole, we see from Figure 4.8b that $R_2 - R_1$ may be approximated very easily if R_1 and R_2 are assumed to be parallel,

$$R_2 - R_1 \doteq d \cos \theta$$

The final result is then

$$V = \frac{Qd\cos\theta}{4\pi\epsilon_0 r^2} \tag{33}$$

Again, we note that the plane z = 0 ($\theta = 90^{\circ}$) is at zero potential.

Using the gradient relationship in spherical coordinates,

$$\mathbf{E} = -\nabla V = -\left(\frac{\partial V}{\partial r}\mathbf{a}_r + \frac{1}{r}\frac{\partial V}{\partial \theta}\mathbf{a}_\theta + \frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi}\mathbf{a}_\phi\right)$$

we obtain

$$\mathbf{E} = -\left(-\frac{Qd\cos\theta}{2\pi\epsilon_0 r^3}\mathbf{a}_r - \frac{Qd\sin\theta}{4\pi\epsilon_0 r^3}\mathbf{a}_\theta\right) \tag{34}$$

or

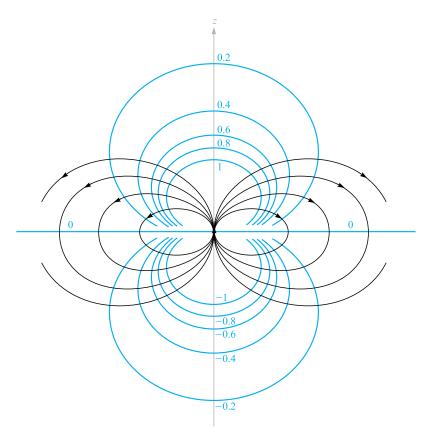
$$\mathbf{E} = \frac{Qd}{4\pi\epsilon_0 r^3} (2\cos\theta \,\mathbf{a}_r + \sin\theta \,\mathbf{a}_\theta)$$
 (35)

These are the desired distant fields of the dipole, obtained with a very small amount of work. Any student who has several hours to spend may try to work the problem in the reverse direction—the authors consider the process too long and detailed to include here, even for effect.

To obtain a plot of the potential field, we choose a dipole such that $Qd/(4\pi\epsilon_0)=1$, and then $\cos\theta=Vr^2$. The colored lines in Figure 4.9 indicate equipotentials for which V=0,+0.2,+0.4,+0.6,+0.8, and +1, as indicated. The dipole axis is vertical, with the positive charge on the top. The streamlines for the electric field are obtained by applying the methods of Section 2.6 in spherical coordinates,

$$\frac{E_{\theta}}{E_{r}} = \frac{r \, d\theta}{dr} = \frac{\sin \theta}{2 \cos \theta}$$

or


$$\frac{dr}{r} = 2\cot\theta \, d\theta$$

from which we obtain

$$r = C_1 \sin^2 \theta$$

The black streamlines shown in Figure 4.9 are for $C_1 = 1, 1.5, 2, \text{ and } 2.5.$

The potential field of the dipole, Eq. (33), may be simplified by making use of the dipole moment. We first identify the vector length directed from -Q to +Q as **d**

Figure 4.9 The electrostatic field of a point dipole with its moment in the \mathbf{a}_z direction. Six equipotential surfaces are labeled with relative values of V.

and then define the *dipole moment* as $Q\mathbf{d}$ and assign it the symbol \mathbf{p} . Thus

$$\mathbf{p} = Q\mathbf{d} \tag{36}$$

The units of **p** are $C \cdot m$.

Because $\mathbf{d} \cdot \mathbf{a}_r = d \cos \theta$, we then have

$$V = \frac{\mathbf{p} \cdot \mathbf{a}_r}{4\pi \epsilon_0 r^2} \tag{37}$$

This result may be generalized as

$$V = \frac{1}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|^2} \mathbf{p} \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$
(38)

where \mathbf{r} locates the field point P, and \mathbf{r}' determines the dipole center. Equation (38) is independent of any coordinate system.