CHAPTER

Energy and Potential

finding the electric field about several simple distributions of charge, and also with

Gauss’s law and its application in determining the field about some symmetrical
charge arrangements. The use of Gauss’s law was invariably easier for these highly
symmetrical distributions because the problem of integration always disappeared
when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field, such as
that of two unlike point charges separated by a small distance, we would have found it
impossible to choose a suitable gaussian surface and obtain an answer. Coulomb’s law,
however, is more powerful and enables us to solve problems for which Gauss’s law is
not applicable. The application of Coulomb’s law is laborious, detailed, and often quite
complex, the reason for this being precisely the fact that the electric field intensity,
a vector field, must be found directly from the charge distribution. Three different
integrations are needed in general, one for each component, and the resolution of the
vector into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar
function with a single integration and then determine the electric field from this scalar
by some simple straightforward procedure, such as differentiation.

This scalar function does exist and is known as the potential or potential field.
We shall find that it has a very real physical interpretation and is more familiar to
most of us than is the electric field which it will be used to find.

We should expect, then, to be equipped soon with a third method of finding
electric fields—a single scalar integration, although not always as simple as we might
wish, followed by a pleasant differentiation.

I n Chapters 2 and 3 we became acquainted with Coulomb’s law and its use in
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4.1 ENERGY EXPENDED IN MOVING A POINT
CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point
at which we wish to find the value of this vector field. If we attempt to move the test
charge against the electric field, we have to exert a force equal and opposite to that
exerted by the field, and this requires us to expend energy or do work. If we wish to
move the charge in the direction of the field, our energy expenditure turns out to be
negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance dL in an electric field E. The
force on Q arising from the electric field is

where the subscript reminds us that this force arises from the field. The component
of this force in the direction dL. which we must overcome is

Fpp =F-a; = QE-a;

where a; = a unit vector in the direction of dL.
The force that we must apply is equal and opposite to the force associated with
the field,

Fappl = _QE‘aL

and the expenditure of energy is the product of the force and distance. That is, the
differential work done by an external source moving charge QisdW = —QE-a;dL,

or dW = —-QE-dL 2)

where we have replaced a; dL by the simpler expression dL.

This differential amount of work required may be zero under several conditions
determined easily from Eq. (2). There are the trivial conditions for which E, Q, or dL.
is zero, and a much more important case in which E and dL are perpendicular. Here
the charge is moved always in a direction at right angles to the electric field. We can
draw on a good analogy between the electric field and the gravitational field, where,
again, energy must be expended to move against the field. Sliding a mass around with
constant velocity on a frictionless surface is an effortless process if the mass is moved
along a constant elevation contour; positive or negative work must be done in moving
it to a higher or lower elevation, respectively.

Returning to the charge in the electric field, the work required to move the charge
a finite distance must be determined by integrating,

final
w=-0/[ E-dL 3)

init
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where the path must be specified before the integral can be evaluated. The charge is
assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the following
section to its interpretation and evaluation.

1
D4.1. Given the electric field E = — (8xyza, +4x”za, —4x”ya.) V/m, find
the differential amount of work doné in moving a 6-nC charge a distance of
2 um, starting at P(2, —2, 3) and proceeding in the direction a; = (a) — gax +

3 2, . 6 3 2, . 3 6
7ay + 732, (b) 73X — 7ay — 732, (C) 7ax + 73),.

Ans. —149.31J; 149.3 1J; 0

4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge Q from one
position to another, Eq. (3), is an example of a line integral, which in vector-analysis
notation always takes the form of the integral along some prescribed path of the dot
product of a vector field and a differential vector path length dL.. Without using vector
analysis we should have to write
final
W=-0 EpdL
it

where E; = component of E along dL.

A line integral is like many other integrals which appear in advanced analysis,
including the surface integral appearing in Gauss’s law, in that it is essentially de-
scriptive. We like to look at it much more than we like to work it out. It tells us to
choose a path, break it up into a large number of very small segments, multiply the
component of the field along each segment by the length of the segment, and then
add the results for all the segments. This is a summation, of course, and the integral
is obtained exactly only when the number of segments becomes infinite.

This procedure is indicated in Figure 4.1, where a path has been chosen from
an initial position B to a final position! A and a uniform electric field is selected
for simplicity. The path is divided into six segments, AL, AL,, ..., ALg, and the
components of E along each segment are denoted by E; 1, E;», ..., Ers. The work
involved in moving a charge Q from B to A is then approximately

W=—-Q(Ep AL + Ef2ALy + -+ + Er6ALg)
or, using vector notation,

W=—-0QE;-AL; + Ey- AL, +--- + Eg - ALy)

! The final position is given the designation A to correspond with the convention for potential
difference, as discussed in the following section.
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Final position

Initial position

Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line
integral of E between points B and A is independent of the path selected, even in a
nonuniform field; this result is not, in general, true for time-varying fields.

and because we have assumed a uniform field,

Ei=E, = =E¢
W =—-QE-(AL; + ALy 4 --- + ALjy)

What is this sum of vector segments in the preceding parentheses? Vectors add
by the parallelogram law, and the sum is just the vector directed from the initial point
B to the final point A, L 4. Therefore

W = —QE-Lgyu (uniform E) 4)

Remembering the summation interpretation of the line integral, this result for the
uniform field can be obtained rapidly now from the integral expression

A
W=—Q/ E-dL 5)
B

as applied to a uniform field

A

W =—-QE- / dL
B
where the last integral becomes L4 and

W =—QE-Lgx (uniform E)
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For this special case of a uniform electric field intensity, we should note that the
work involved in moving the charge depends only on Q, E, and L4, a vector drawn
from the initial to the final point of the path chosen. It does not depend on the particular
path we have selected along which to carry the charge. We may proceed from B to A
on a straight line or via the Old Chisholm Trail; the answer is the same. We show in
Section 4.5 that an identical statement may be made for any nonuniform (static) E field.

Let us use several examples to illustrate the mechanics of setting up the line
integral appearing in Eq. (5).

We are given the nonuniform field
E = ya, + xa, + 2a;,

and we are asked to determine the work expended in carrying 2C from B(1,0, 1) to
A(0.8, 0.6, 1) along the shorter arc of the circle

Solution. Weuse W = —Q f ; E - dL, where E is not necessarily constant. Working
in rectangular coordinates, the differential path dL is dxa, + dya, + dza_, and the

integral becomes
A
-0 f E.dL
B

A
—2/ (ya, +xa, +2a;)-(dxa, +dya, +dza,)
B

0.8 0.6 1
—2/ ydx—Z/ xdy—4/ dz
1 0 1

where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variable of integration. Using the equation of the circular
path (and selecting the sign of the radical which is correct for the quadrant involved),
we have

w

08 0.6
W=-2 \/l—xzdx—Z/ V1—y2dy—0
0

1
058

—[x\/ 1 — x2 4 sin™! x]l — [y\/l — y2 4 sin”! y]o

—(0.48 +0.927 — 0 — 1.571) — (0.48 + 0.644 — 0 — 0)

—0.96]J

0.6
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Again find the work required to carry 2C from B to A in the same field, but this time
use the straight-line path from B to A.

Solution. We start by determining the equations of the straight line. Any two of the
following three equations for planes passing through the line are sufficient to define
the line:

yAa — YB
y —yp="—"—"-(x —xp)
XA — XB
ZA— 2
z—m= 2"y —yp
YA — VB
XA — X
x—xp="2""Ez—2zp)
ZA — 2B
From the first equation we have
y=-3x—-1)
and from the second we obtain
z=1
Thus,
0.8 0.6 1
W:—2/ ydx—Z/ xdy—4/ dz
1 0 1
0.8 0.6 y
-6 (x—l)dx—2/ (1——) dy
1 0 3
=—-0.961]

This is the same answer we found using the circular path between the same
two points, and it again demonstrates the statement (unproved) that the work done is
independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show thatdy = —3 dx and
dx = —% dy. These substitutions may be made in the first two integrals, along with
a change in limits, and the answer may be obtained by evaluating the new integrals.
This method is often simpler if the integrand is a function of only one variable.

Note that the expressions for dL in our three coordinate systems use the dif-
ferential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in
Section 1.8, and spherical in Section 1.9):

dL =dxa, +dya, +dza, (rectangular) (6)
dL =dpa, + pdpay +dza; (cylindrical) 7
dL =dra, +rdfay+rsinf dpa, (spherical) (8)

The interrelationships among the several variables in each expression are determined
from the specific equations for the path.
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Infinite line
charge p; P

S
S e

dL=dpa,
dL=p,dpa,

(@) (b)

Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried
in the field of an infinite line charge. No work is expected in the former case.

As a final example illustrating the evaluation of the line integral, we investigate
several paths that we might take near an infinite line charge. The field has been
obtained several times and is entirely in the radial direction,

PL
2w enp r

E=E,a, =

First we find the work done in carrying the positive charge Q about a circular
path of radius p, centered at the line charge, as illustrated in Figure 4.2a. Without
lifting a pencil, we see that the work must be nil, for the path is always perpendicular
to the electric field intensity, or the force on the charge is always exerted at right
angles to the direction in which we are moving it. For practice, however, we will set
up the integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the circular
path selected demands that dp and dz be zero, so dL. = p; d¢ ay. The work is then

final

PL

W=_0
init 27 €0 01

a,-prdpay

o PL
=—Q/ dpa,-a3 =0
0

2 €

We will now carry the charge from p = a to p = b along a radial path
(Figure 4.2b). Here dL. = dp a, and

final b
d
W:—Q/ PL ap-dpap:—Q/ pL_4p
init 27 €P a 2mey p

or

Opr . b
In —
2wey  a

W=—

Because b is larger than a, In(b/a) is positive, and the work done is negative,
indicating that the external source that is moving the charge receives energy.
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One of the pitfalls in evaluating line integrals is a tendency to use too many minus
signs when a charge is moved in the direction of a decreasing coordinate value. This is
taken care of completely by the limits on the integral, and no misguided attempt should
be made to change the sign of dL. Suppose we carry Q from b to a (Figure 4.2b).
We still have d. = dp a, and show the different direction by recognizing p = b as
the initial point and p = a as the final point,

W:_Q/“ oL d_p:QlenQ
p, 2mey p 2wey  a

This is the negative of the previous answer and is obviously correct.

D4.2. Calculate the work done in moving a 4-C charge from B(1, 0, 0) to
A(0, 2, 0) along the path y = 2 — 2x, z = 0 in the field E = (a) 5a,V/m;
(b) 5xa,V/m; (c) Sxa, + Sya,V/m.

Ans. 20J;10J; =307

D4.3. We will see later that a time-varying E field need not be conservative.
(If it is not conservative, the work expressed by Eq. (3) may be a function of the
path used.) Let E = ya, V/m at a certain instant of time, and calculate the work
required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line
segments joining: (a) (1, 3,5)to (2,3,5)to (2,0,5)to (2,0, 3); (b) (1, 3,5) to
(1,3,3)to (1,0, 3) to (2,0, 3).

Ans. —91J;0

()
Mustrations

4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done
by an external source in moving a charge Q from one point to another in an electric
field E, “Potential difference and work.”

final
W=— E-.dL

init

In much the same way as we defined the electric field intensity as the force on a
unit test charge, we now define potential difference V as the work done (by an external
source) in moving a unit positive charge from one point to another in an electric field,

final
Potential difference =V = — / E.dL ©))

init
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We have to agree on the direction of movement, and we do this by stating that
Vg signifies the potential difference between points A and B and is the work done in
moving the unit charge from B (last named) to A (first named). Thus, in determining
Vap, B is the initial point and A is the final point. The reason for this somewhat
peculiar definition will become clearer shortly, when it is seen that the initial point B
is often taken at infinity, whereas the final point A represents the fixed position of the
charge; point A is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is
defined as a more common unit, abbreviated as V. Hence the potential difference
between points A and B is

A
vABz_/ E-dLV (10)
B

and V4 is positive if work is done in carrying the positive charge from B to A.
From the line-charge example of Section 4.2 we found that the work done in
taking a charge Q from p = b to p = a was
Opr, b

=——1In—
2meg  a

Thus, the potential difference between points at p = a and p = b is

w b
V= ==L n?2 (11)
0 2mey  a
We can try out this definition by finding the potential difference between points
A and B atradial distances r4 and r from a point charge Q. Choosing an origin at Q,

E=Ea, = ﬁar
and
dL =dra,
we have

A ra 1 1
VABI—f E-dL:—/ derz 0 (———) (12)
B vy ATeEQr dmeg \ry rp

If rp > ry, the potential difference V4p is positive, indicating that energy is
expended by the external source in bringing the positive charge from rg to r4. This
agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the potential, or absolute potential, of a point,
rather than the potential difference between two points, but this means only that we
agree to measure every potential difference with respect to a specified reference point
that we consider to have zero potential. Common agreement must be reached on
the zero reference before a statement of the potential has any significance. A person
having one hand on the deflection plates of a cathode-ray tube that are “at a potential
of 50 V” and the other hand on the cathode terminal would probably be too shaken up
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to understand that the cathode is not the zero reference, but that all potentials in that
circuit are customarily measured with respect to the metallic shield about the tube.
The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical po-
tential measurements is “ground,” by which we mean the potential of the surface
region of the earth itself. Theoretically, we usually represent this surface by an infinite
plane at zero potential, although some large-scale problems, such as those involving
propagation across the Atlantic Ocean, require a spherical surface at zero potential.

Another widely used reference “point” is infinity. This usually appears in theo-
retical problems approximating a physical situation in which the earth is relatively far
removed from the region in which we are interested, such as the static field near the
wing tip of an airplane that has acquired a charge in flying through a thunderhead, or
the field inside an atom. Working with the gravitational potential field on earth, the
zero reference is normally taken at sea level; for an interplanetary mission, however,
the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero
reference when cylindrical symmetry is present and infinity proves inconvenient. In a
coaxial cable the outer conductor is selected as the zero reference for potential. And,
of course, there are numerous special problems, such as those for which a two-sheeted
hyperboloid or an oblate spheroid must be selected as the zero-potential reference,
but these need not concern us immediately.

If the potential at point A is V4 and that at B is Vj, then

Vap = Vi — Vg (13)

where we necessarily agree that V4 and Vg shall have the same zero reference point.

D4.4. Anelectric field is expressed in rectangular coordinates by E = 6x2a, +
6ya, +4a,V/m. Find: (a) Vy if points M and N are specified by M (2, 6, —1)
and N(=3,-3,2); (b) Vyy if V. = 0 at Q(4, =2, —=35); (¢) Vy if V = 2 at
P(1,2, —4).

Ans. —139.0V; —120.0 V; 19.0 V

4.4 THE POTENTIAL FIELD
OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between
two points located at r = r4 and r = rp in the field of a point charge Q placed
at the origin. How might we conveniently define a zero reference for potential? The
simplest possibility is to let V = 0 at infinity. If we let the point at r = rp recede to
infinity, the potential at r4 becomes

Q

A =
47T607‘A
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or, as there is no reason to identify this point with the A subscript,

v @

47T60r

(14)

This expression defines the potential at any point distant 7 from a point charge Q
at the origin, the potential at infinite radius being taken as the zero reference. Returning
to a physical interpretation, we may say that Q /4mwegr joules of work must be done
in carrying a unit charge from infinity to any point » meters from the charge Q.

A convenient method to express the potential without selecting a specific zero
reference entails identifying 74 as r once again and letting Q /4mweorp be a constant.
Then

0

47T6()I"

C 15)

and C may be selected so that V = 0 at any desired value of 7. We could also select
the zero reference indirectly by electing to let V be Vjy at r = ry.

It should be noted that the potential difference between two points is not a func-
tion of Cj.

Equations (14) and (15) represent the potential field of a point charge. The po-
tential is a scalar field and does not involve any unit vectors.

We now define an equipotential surface as a surface composed of all those points
having the same value of potential. All field lines would be perpendicular to such a
surface at the points where they intersect it. Therefore, no work is involved in moving
a unit charge around on an equipotential surface. The equipotential surfaces in the
potential field of a point charge are spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that it
is an inverse-distance field, whereas the electric field intensity was found to be an
inverse-square-law function. A similar result occurs for the gravitational force field
of a point mass (inverse-square law) and the gravitational potential field (inverse
distance). The gravitational force exerted by the earth on an object one million miles
from it is four times that exerted on the same object two million miles away. The
kinetic energy given to a freely falling object starting from the end of the universe
with zero velocity, however, is only twice as much at one million miles as it is at two
million miles.

D4.5. A 15-nC point charge is at the origin in free space. Calculate V; if point
P is located at Pi(—2, 3, —1) and (a) V =0 at (6, 5, 4); (b) V = 0 at infinity;
(c)V=5Vat(2,0,4).

Ans. 20.67 V;36.0 V; 10.89 V

i)
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4.5 THE POTENTIAL FIELD OF A SYSTEM OF
CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive
charge from the zero reference to the point, and we have suspected that this work, and
hence the potential, is independent of the path taken. If it were not, potential would
not be a very useful concept.

Let us now prove our assertion. We do so by beginning with the potential field
of the single point charge for which we showed, in Section 4.4, the independence
with regard to the path, noting that the field is linear with respect to charge so that
superposition is applicable. It will then follow that the potential of a system of charges
has a value at any point which is independent of the path taken in carrying the test
charge to that point.

Thus the potential field of a single point charge, which we shall identify as Q;
and locate at ry, involves only the distance |r — r;| from Q; to the point at r where
we are establishing the value of the potential. For a zero reference at infinity, we have

Qi

V)= — =<
® = reoir =]

The potential arising from two charges, Q; at r; and Q, at r», is a function only of
[r —ry| and |r — ry[, the distances from Q; and Q5 to the field point, respectively.

01 0

V(r)=
® dmeglr —ry|  4dmep|r — s

Continuing to add charges, we find that the potential arising from n point charges is

V(r) = Z O (16)

= Ameolr —ry|

If each point charge is now represented as a small element of a continuous volume
charge distribution p, Av, then

_ pv(rl)Avl Pu(l’z)sz . pv(rn)AVn
dreglr —ry|  4dmeglr — ;| dreylr — 1|

V(r)

As we allow the number of elements to become infinite, we obtain the integral
expression

V(r):/ _p)av’ 7

ol 4megir — 1|

‘We have come quite a distance from the potential field of the single point charge,
and it might be helpful to examine Eq. (17) and refresh ourselves as to the meaning of
each term. The potential V (r) is determined with respect to a zero reference potential
at infinity and is an exact measure of the work done in bringing a unit charge from
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infinity to the field point at r where we are finding the potential. The volume charge
density p, (r') and differential volume element dv’ combine to represent a differential
amount of charge p,(r')dv’ located at r’. The distance |r — r’| is that distance from
the source point to the field point. The integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface charge, the
integration is along the line or over the surface:

V(r) = / _pr)dL’ (18)
4mep|r — 1|

V(r) = / M (19)
s 4meplr — /|

The most general expression for potential is obtained by combining Eqgs. (16)—(19).

These integral expressions for potential in terms of the charge distribution should
be compared with similar expressions for the electric field intensity, such as Eq. (15)
in Section 2.3:

E(r) = / o@dv  r—r

o 4eolr —r'[> [r — |

The potential again is inverse distance, and the electric field intensity, inverse-
square law. The latter, of course, is also a vector field.

To illustrate the use of one of these potential integrals, we will find V on the z axis for
a uniform line charge p;, in the form of a ring, p = a, in the z = 0 plane, as shown
in Figure 4.3.

Solution. Working with Eq. (18), wehave dL' = ad¢’,r = za,,v' = aa,, |[r—r'| =

Ja? + 72, and

4egn/a’ + 72 B 2epv/a’ + 72

2 /
d
V:/ prado pra
0
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For a zero reference at infinity, then:

1. The potential arising from a single point charge is the work done in carrying a
unit positive charge from infinity to the point at which we desire the potential,
and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of
the individual potential fields arising from each charge.

3. The potential arising from a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity to
the point in question along any path we choose.
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¢(0,0,z2)

[r—1r| =Va2+22

dL' = a dg’

Figure 4.3 The potential field of a ring of uniform line
charge density is easily obtained from V = [ p, (r')dL’/
(Ameolr —r)).

In other words, the expression for potential (zero reference at infinity),

A
VA:—/ E.dL

o0
or potential difference,
A
VAB=VA—VB=—/ E.dL
B

is not dependent on the path chosen for the line integral, regardless of the source of
the E field.

This result is often stated concisely by recognizing that no work is done in

carrying the unit charge around any closed path, or

?{E-szo (20)

A small circle is placed on the integral sign to indicate the closed nature of the
path. This symbol also appeared in the formulation of Gauss’s law, where a closed
surface integral was used.

Equation (20) is true for static fields, but we will see in Chapter 9 that Faraday
demonstrated it was incomplete when time-varying magnetic fields were present. One
of Maxwell’s greatest contributions to electromagnetic theory was in showing that a
time-varying electric field produces a magnetic field, and therefore we should expect
to find later that Eq. (20) is not correct when either E or the magnetic field varies
with time.

Restricting our attention to the static case where E does not change with time,
consider the dc circuit shown in Figure 4.4. Two points, A and B, are marked, and
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é

L
B
Figure 4.4 A simple dc-circuit problem that must be

solved by applying ¢ E - dL = 0 in the form of Kirchhoff's
voltage law.

(20) states that no work is involved in carrying a unit charge from A through R, and
R3 to B and back to A through Rj, or that the sum of the potential differences around
any closed path is zero.

Equation (20) is therefore just a more general form of Kirchhoff’s circuital law
for voltages, more general in that we can apply it to any region where an electric
field exists and we are not restricted to a conventional circuit composed of wires,
resistances, and batteries. Equation (20) must be amended before we can apply it to
time-varying fields.

Any field that satisfies an equation of the form of Eq. (20), (i.e., where the closed
line integral of the field is zero) is said to be a conservative field. The name arises from
the fact that no work is done (or that energy is conserved) around a closed path. The
gravitational field is also conservative, for any energy expended in moving (raising)
an object against the field is recovered exactly when the object is returned (lowered)
to its original position. A nonconservative gravitational field could solve our energy
problems forever.

Given a nonconservative field, it is of course possible that the line integral may
be zero for certain closed paths. For example, consider the force field, F = sinwp a,.
Around a circular path of radius p = p;, we have dL = pd¢ a,, and

2w 2w
%F -dL = / sinmwpjag - prdg ay = / p1 8inmp; do
0 0

= 2mp; Sin TP

Theintegralis zeroif p; = 1, 2, 3, ..., etc., butitis not zero for other values of py,
or for most other closed paths, and the given field is not conservative. A conservative
field must yield a zero value for the line integral around every possible closed path.

D4.6. If we take the zero reference for potential at infinity, find the potential
at (0, 0, 2) caused by this charge configuration in free space (@) 12 nC/m on the
line p = 2.5 m, z = 0; (b) point charge of 18 nC at (1, 2, —1); (¢) 12 nC/m on
theliney =2.5,z=0,—-1.0 <x < 1.0.

Ans. 529 V;43.2V; 663V
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4.6 POTENTIAL GRADIENT

We now have two methods of determining potential, one directly from the electric field
intensity by means of a line integral, and another from the basic charge distribution
itself by a volume integral. Neither method is very helpful in determining the fields
in most practical problems, however, for as we will see later, neither the electric field
intensity nor the charge distribution is very often known. Preliminary information is
much more apt to consist of a description of two equipotential surfaces, such as the
statement that we have two parallel conductors of circular cross section at potentials
of 100 and —100 V. Perhaps we wish to find the capacitance between the conductors,
or the charge and current distribution on the conductors from which losses may be
calculated.

These quantities may be easily obtained from the potential field, and our im-
mediate goal will be a simple method of finding the electric field intensity from the
potential.

We already have the general line-integral relationship between these quantities,

V:—/E-dL Q1)

but this is much easier to use in the reverse direction: given E, find V.
However, Eq. (21) may be applied to a very short element of length AL along
which E is essentially constant, leading to an incremental potential difference AV,

AV = —E-AL (22)

Now consider a general region of space, as shown in Figure 4.5, in which E and
V both change as we move from point to point. Equation (22) tells us to choose an
incremental vector element of length AL = AL a; and multiply its magnitude by

Figure 4.5 A vector incremental element of
length AL is shown making an angle of 6 with an
E field, indicated by its streamlines. The sources
of the field are not shown.
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the component of E in the direction of a; (one interpretation of the dot product) to
obtain the small potential difference between the final and initial points of AL.
If we designate the angle between AL and E as 6, then

AV = —EALcos6

We now pass to the limit and consider the derivative dV /d L. To do this, we need
to show that V may be interpreted as a function V(x, y, z). So far, V is merely the
result of the line integral (21). If we assume a specified starting point or zero reference
and then let our end point be (x, y, z), we know that the result of the integration is a
unique function of the end point (x, y, z) because E is a conservative field. Therefore
V is a single-valued function V(x, y, z). We may then pass to the limit and obtain

av
L= E cosf

In which direction should AL be placed to obtain a maximum value of AV?
Remember that E is a definite value at the point at which we are working and is
independent of the direction of AL. The magnitude AL is also constant, and our
variable is a;, the unit vector showing the direction of AL. It is obvious that the
maximum positive increment of potential, A Vi, will occur when cos 8 is —1, or
AL points in the direction opposite to E. For this condition,

dv
dL max
This little exercise shows us two characteristics of the relationship between E
and V at any point:

1. The magnitude of the electric field intensity is given by the maximum value of
the rate of change of potential with distance.

2. This maximum value is obtained when the direction of the distance increment is
opposite to E or, in other words, the direction of E is opposite to the direction in
which the potential is increasing the most rapidly.

We now illustrate these relationships in terms of potential. Figure 4.6 is intended
to show the information we have been given about some potential field. It does this by
showing the equipotential surfaces (shown as lines in the two-dimensional sketch).
We desire information about the electric field intensity at point P. Starting at P, we lay
off a small incremental distance AL in various directions, hunting for that direction
in which the potential is changing (increasing) the most rapidly. From the sketch, this
direction appears to be left and slightly upward. From our second characteristic above,
the electric field intensity is therefore oppositely directed, or to the right and slightly
downward at P. Its magnitude is given by dividing the small increase in potential by
the small element of length.

It seems likely that the direction in which the potential is increasing the most
rapidly is perpendicular to the equipotentials (in the direction of increasing potential),
and this is correct, for if AL is directed along an equipotential, AV = 0 by our
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Figure 4.6 A potential field is shown by its equipotential
surfaces. At any point the E field is normal to the
equipotential surface passing through that point and is
directed toward the more negative surfaces.

+10

definition of an equipotential surface. But then
AV =—-E-AL=0

and as neither E nor AL is zero, E must be perpendicular to this AL or perpendicular
to the equipotentials.

Because the potential field information is more likely to be determined first, let
us describe the direction of AL, which leads to a maximum increase in potential
mathematically in terms of the potential field rather than the electric field intensity.
We do this by letting ay be a unit vector normal to the equipotential surface and
directed toward the higher potentials. The electric field intensity is then expressed in
terms of the potential,

dv 3
dL | ay (23)
which shows that the magnitude of E is given by the maximum space rate of change
of V and the direction of E is normal to the equipotential surface (in the direction of
decreasing potential).
Because dV /d L|.x occurs when AL is in the direction of ay, we may remind
ourselves of this fact by letting

E:

dv . dv
dL| ...~ dN
and
dv
E=—-——— 24
N (24)

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process of
finding the electric field intensity from the potential. Both are descriptive of a general
procedure, and we do not intend to use them directly to obtain quantitative information.
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This procedure leading from V to E is not unique to this pair of quantities, however,
but has appeared as the relationship between a scalar and a vector field in hydraulics,
thermodynamics, and magnetics, and indeed in almost every field to which vector
analysis has been applied.

The operation on V by which —E is obtained is known as the gradient, and the
gradient of a scalar field 7 is defined as

dT
Gradient of T = d7T = —a 25
radient o gra N N (25)

where ay is a unit vector normal to the equipotential surfaces, and that normal is
chosen, which points in the direction of increasing values of 7.
Using this new term, we now may write the relationship between V and E as

E=—gradV (26)

Because we have shown that V is a unique function of x, y, and z, we may take
its total differential

aV aV oV
dV = —dx + —dy + —dz
ox ay 0z

But we also have
dV =—-E-dL=—-E,dx — E,dy — E.dz

Because both expressions are true for any dx, dy, and dz, then

aV
E,=——
0x
A%
E, = ——
dy
oV
E.=——
0z

These results may be combined vectorially to yield

27)

E aVv o aVv o oV
=—\|\—a +—a, + —a
ax ay Y 9z ¢

and comparing Eqs. (26) and (27) provides us with an expression which may be used
to evaluate the gradient in rectangular coordinates,

A% A% A%
gradV = —a, + —a, + Eaz

28
ox ay (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors
that are often incorrectly added to the divergence expression appear to be those that
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were incorrectly removed from the gradient. Once the physical interpretation of the
gradient, expressed by Eq. (25), is grasped as showing the maximum space rate of
change of a scalar quantity and the direction in which this maximum occurs, the vector
nature of the gradient should be self-evident.

The vector operator
V= iax + ia + i
dx ay 9z
may be used formally as an operator on a scalar, 7', VT, producing
oT oT oT

VI = —a, + —a,+ —a
ax " ay T 9z ¢

VT = grad T

This allows us to use a very compact expression to relate E and V,

a

from which we see that

E=_-VV (29)

The gradient may be expressed in terms of partial derivatives in other coordinate
systems through the application of its definition Eq. (25). These expressions are
derived in Appendix A and repeated here for convenience when dealing with problems
having cylindrical or spherical symmetry. They also appear inside the back cover.

aVv aVv Vv
VV = —a, + —a,+ —a; (rectangular) 30)
dx dy 0z
av 10V aVv
VV = gap + = %ad) 4F a—zaZ (cylindrical) (€2))
av 10V | )
VV = —a (spherical) (32)

or T 790" T ring 0g

Note that the denominator of each term has the form of one of the components of dL in
that coordinate system, except that partial differentials replace ordinary differentials;
for example, 7 sin 6 d¢ becomes r sinf d¢.

We now illustrate the gradient concept with an example.

Given the potential field, V = 2x2y — 5z, and a point P(—4, 3, 6), we wish to find
several numerical values at point P: the potential V, the electric field intensity E, the
direction of E, the electric flux density D, and the volume charge density p,.

Solution. The potential at P(—4, 5, 6) is
Vp = 2(—=4)*(3) — 5(6) = 66 V
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Next, we may use the gradient operation to obtain the electric field intensity,
E = —VV = —4xya, — 2x*a, + 5a, V/m
The value of E at point P is
Ep =48a, —32a, + 5a, V/m

and

|Ep| = /482 + (—32)2 + 5% = 57.9 V/m
The direction of E at P is given by the unit vector
ag p = (48a, — 32a, + 5a;)/57.9
= 0.829a, — 0.553a, + 0.086a,
If we assume these fields exist in free space, then
D = ¢E = —35.4xya, — 17.71x*a, + 44.3a, pC/m’

Finally, we may use the divergence relationship to find the volume charge density that
is the source of the given potential field,

oy = VD = —354y pC/m?
At P, p, = —106.2 pC/m>.

D4.7. A portion of a two-dimensional (E, = 0) potential field is shown in
Figure 4.7. The grid lines are 1 mm apart in the actual field. Determine approx-
imate values for E in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans. —1075a, V/m; —600a, — 700a, V/m; —500a, — 650a, V/m

00
D4.8. Giventhe potential field in cylindrical coordinates, V = 7 1,0 cos ¢V,
and point P at p = 3 m, ¢ = 60°, z = 2 m, find values at P fozr (a) V; (b) E;
(c) E; (d)dV /dN; (e) ay; (f) py in free space.

Ans. 30.0 V; —10.00a, + 17.3a4 +24.0a, V/m; 31.2 V/m; 31.2 V/m; 0.32a, — 0.55a,
— 0.77a,; —234 pC/m?>
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4.7 THE ELECTRIC DIPOLE

The dipole fields that we develop in this section are quite important because they
form the basis for the behavior of dielectric materials in electric fields, as discussed
in Chapter 6, as well as justifying the use of images, as described in Section 5.5 of
Chapter 5. Moreover, this development will serve to illustrate the importance of the
potential concept presented in this chapter.

An electric dipole, or simply a dipole, is the name given to two point charges of
equal magnitude and opposite sign, separated by a distance that is small compared to
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110y

108V

106 V

102V

Figure 4.7 See Problem D4.7.

the distance to the point P at which we want to know the electric and potential fields.
The dipole is shown in Figure 4.8a. The distant point P is described by the spherical
coordinates r, 6, and ¢ = 90°, in view of the azimuthal symmetry. The positive and
negative point charges have separation d and rectangular coordinates (0, 0, %d ) and
0,0, —%d), respectively.

So much for the geometry. What would we do next? Should we find the total
electric field intensity by adding the known fields of each point charge? Would it be
easier to find the total potential field first? In either case, having found one, we will
find the other from it before calling the problem solved.

If we choose to find E first, we will have two components to keep track of in
spherical coordinates (symmetry shows E is zero), and then the only way to find V
from E is by use of the line integral. This last step includes establishing a suitable zero
reference for potential, since the line integral gives us only the potential difference
between the two points at the ends of the integral path.

On the other hand, the determination of V first is a much simpler problem.
This is because we find the potential as a function of position by simply adding the
scalar potentials from the two charges. The position-dependent vector magnitude and
direction of E are subsequently evaluated with relative ease by taking the negative
gradient of V.

Choosing this simpler method, we let the distances from Q and —Q to P be R,
and R,, respectively, and write the total potential as

Q(l 1) 0 R»—R,

=47T60 R_l_R—2 =47t6() R1R2
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(@)

To distant
point P

()

Figure 4.8 (a) The geometry of the problem of an
electric dipole. The dipole moment p = Qd is in the a,
direction. (b) For a distant point P, Ry is essentially
parallel to R», and we find that R, — Ry = dcos#.

Note that the plane z = 0, midway between the two point charges, is the locus of
points for which R} = R,, and is therefore at zero potential, as are all points at

For a distant point, R; = R;, and the R| R, product in the denominator may be
replaced by r2. The approximation may not be made in the numerator, however,
without obtaining the trivial answer that the potential field approaches zero as we go
very far away from the dipole. Coming back a little closer to the dipole, we see from
Figure 4.8b that R, — R may be approximated very easily if R; and R, are assumed
to be parallel,

R, — Ry =dcosf
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The final result is then

dcos6
V= Géeost (33)
4 60]’2
Again, we note that the plane z = 0 (6 = 90°) is at zero potential.
Using the gradient relationship in spherical coordinates,
E vV oV n 190V n |
=— =—|—a +-—a — —a
or 06 rsing ag Y
we obtain
dcos6 dsin6
o (_Qdest,  Qdsng (34)
2megr? 4meor3
or
E= (2cosf a, 4 sin6 ay) 35)
4eqr3

These are the desired distant fields of the dipole, obtained with a very small
amount of work. Any student who has several hours to spend may try to work the
problem in the reverse direction—the authors consider the process too long and de-
tailed to include here, even for effect.

To obtain a plot of the potential field, we choose a dipole such that
Qd/(4mey) = 1, and then cos = Vr2. The colored lines in Figure 4.9 indicate
equipotentials for which V. = 0, +0.2, 40.4, 40.6, +0.8, and +1, as indicated.
The dipole axis is vertical, with the positive charge on the top. The streamlines for
the electric field are obtained by applying the methods of Section 2.6 in spherical
coordinates,

Ey rdo sin 6

E,  dr ~ 2cosf

or

d
a = 2cotf db
,

from which we obtain
r=0_C sin’ 0
The black streamlines shown in Figure 4.9 are for C; = 1, 1.5, 2, and 2.5.

The potential field of the dipole, Eq. (33), may be simplified by making use of
the dipole moment. We first identify the vector length directed from —Q to +Q as d



CHAPTER 4 Energy and Potential

Figure 4.9 The electrostatic field of a point dipole with its moment in the a,
direction. Six equipotential surfaces are labeled with relative values of V.

and then define the dipole moment as Qd and assign it the symbol p. Thus
3)
The units of p are C - m.

Because d - a, = d cos 6, we then have

T 37)
- 47'[60}’2

This result may be generalized as

1 r—r

- . 38
47t60|l‘—l'/|2p r —r/| (38)

where r locates the field point P, and r’ determines the dipole center. Equation (38)
is independent of any coordinate system.
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