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Energy and Potential

I
n Chapters 2 and 3 we became acquainted with Coulomb’s law and its use in

finding the electric field about several simple distributions of charge, and also with

Gauss’s law and its application in determining the field about some symmetrical

charge arrangements. The use of Gauss’s law was invariably easier for these highly

symmetrical distributions because the problem of integration always disappeared

when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field, such as

that of two unlike point charges separated by a small distance, we would have found it

impossible to choose a suitable gaussian surface and obtain an answer. Coulomb’s law,

however, is more powerful and enables us to solve problems for which Gauss’s law is

not applicable. The application of Coulomb’s law is laborious, detailed, and often quite

complex, the reason for this being precisely the fact that the electric field intensity,

a vector field, must be found directly from the charge distribution. Three different

integrations are needed in general, one for each component, and the resolution of the

vector into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar

function with a single integration and then determine the electric field from this scalar

by some simple straightforward procedure, such as differentiation.

This scalar function does exist and is known as the potential or potential field.

We shall find that it has a very real physical interpretation and is more familiar to

most of us than is the electric field which it will be used to find.

We should expect, then, to be equipped soon with a third method of finding

electric fields—a single scalar integration, although not always as simple as we might

wish, followed by a pleasant differentiation.
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4.1 ENERGY EXPENDED IN MOVING A POINT
CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point

at which we wish to find the value of this vector field. If we attempt to move the test

charge against the electric field, we have to exert a force equal and opposite to that

exerted by the field, and this requires us to expend energy or do work. If we wish to

move the charge in the direction of the field, our energy expenditure turns out to be

negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance dL in an electric field E. The

force on Q arising from the electric field is

FE = QE (1)

where the subscript reminds us that this force arises from the field. The component

of this force in the direction dL which we must overcome is

FE L = F · aL = QE · aL

where aL = a unit vector in the direction of dL.

The force that we must apply is equal and opposite to the force associated with

the field,

Fappl = −QE · aL

and the expenditure of energy is the product of the force and distance. That is, the

differential work done by an external source moving charge Q is dW = −QE · aLd L ,

or dW = −QE · dL (2)

where we have replaced aLdL by the simpler expression dL.

This differential amount of work required may be zero under several conditions

determined easily from Eq. (2). There are the trivial conditions for which E, Q, or dL

is zero, and a much more important case in which E and dL are perpendicular. Here

the charge is moved always in a direction at right angles to the electric field. We can

draw on a good analogy between the electric field and the gravitational field, where,

again, energy must be expended to move against the field. Sliding a mass around with

constant velocity on a frictionless surface is an effortless process if the mass is moved

along a constant elevation contour; positive or negative work must be done in moving

it to a higher or lower elevation, respectively.

Returning to the charge in the electric field, the work required to move the charge

a finite distance must be determined by integrating,

W = −Q

∫ final

init

E · dL (3)
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where the path must be specified before the integral can be evaluated. The charge is

assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the following

section to its interpretation and evaluation.

D4.1. Given the electric field E =
1

z2
(8xyzax + 4x2zay − 4x2 yaz) V/m, find

the differential amount of work done in moving a 6-nC charge a distance of

2 µm, starting at P(2, −2, 3) and proceeding in the direction aL = (a) − 6
7
ax +

3
7
ay + 2

7
az ; (b) 6

7
ax − 3

7
ay − 2

7
az ; (c) 3

7
ax + 6

7
ay .

Ans. −149.3 fJ; 149.3 fJ; 0

4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge Q from one

position to another, Eq. (3), is an example of a line integral, which in vector-analysis

notation always takes the form of the integral along some prescribed path of the dot

product of a vector field and a differential vector path length dL. Without using vector

analysis we should have to write

W = −Q

∫ final

init

EL dL

where EL = component of E along dL.

A line integral is like many other integrals which appear in advanced analysis,

including the surface integral appearing in Gauss’s law, in that it is essentially de-

scriptive. We like to look at it much more than we like to work it out. It tells us to

choose a path, break it up into a large number of very small segments, multiply the

component of the field along each segment by the length of the segment, and then

add the results for all the segments. This is a summation, of course, and the integral

is obtained exactly only when the number of segments becomes infinite.

This procedure is indicated in Figure 4.1, where a path has been chosen from

an initial position B to a final position1 A and a uniform electric field is selected

for simplicity. The path is divided into six segments, �L1, �L2, . . . , �L6, and the

components of E along each segment are denoted by EL1, EL2, . . . , EL6. The work

involved in moving a charge Q from B to A is then approximately

W = −Q(EL1�L1 + EL2�L2 + · · · + EL6�L6)

or, using vector notation,

W = −Q(E1 · �L1 + E2 · �L2 + · · · + E6 · �L6)

1 The final position is given the designation A to correspond with the convention for potential

difference, as discussed in the following section.
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Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line

integral of E between points B and A is independent of the path selected, even in a

nonuniform field; this result is not, in general, true for time-varying fields.

and because we have assumed a uniform field,

E1 = E2 = · · · = E6

W = −QE · (�L1 + �L2 + · · · + �L6)

What is this sum of vector segments in the preceding parentheses? Vectors add

by the parallelogram law, and the sum is just the vector directed from the initial point

B to the final point A, LB A. Therefore

W = −QE · LB A (uniform E) (4)

Remembering the summation interpretation of the line integral, this result for the

uniform field can be obtained rapidly now from the integral expression

W = −Q

∫ A

B

E · dL (5)

as applied to a uniform field

W = −QE ·

∫ A

B

dL

where the last integral becomes LB A and

W = −QE · LB A (uniform E)
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For this special case of a uniform electric field intensity, we should note that the

work involved in moving the charge depends only on Q, E, and LB A, a vector drawn

from the initial to the final point of the path chosen. It does not depend on the particular

path we have selected along which to carry the charge. We may proceed from B to A

on a straight line or via the Old Chisholm Trail; the answer is the same. We show in

Section 4.5 that an identical statement may be made for any nonuniform (static) E field.

Let us use several examples to illustrate the mechanics of setting up the line

integral appearing in Eq. (5).

EXAMPLE 4.1

We are given the nonuniform field

E = yax + xay + 2az

and we are asked to determine the work expended in carrying 2C from B(1, 0, 1) to

A(0.8, 0.6, 1) along the shorter arc of the circle

x2 + y2 = 1 z = 1

Solution. We use W = −Q
∫ A

B
E · dL, where E is not necessarily constant. Working

in rectangular coordinates, the differential path dL is dxax + dyay + dzaz , and the

integral becomes

W = −Q

∫ A

B

E · dL

= −2

∫ A

B

(yax + xay + 2az) · (dx ax + dy ay + dz az)

= −2

∫ 0.8

1

y dx − 2

∫ 0.6

0

x dy − 4

∫ 1

1

dz

where the limits on the integrals have been chosen to agree with the initial and final

values of the appropriate variable of integration. Using the equation of the circular

path (and selecting the sign of the radical which is correct for the quadrant involved),

we have

W = −2

∫ 0.8

1

√

1 − x2 dx − 2

∫ 0.6

0

√

1 − y2 dy − 0

= −
[

x
√

1 − x2 + sin−1 x
]0.8

1
−

[

y
√

1 − y2 + sin−1 y
]0.6

0

= −(0.48 + 0.927 − 0 − 1.571) − (0.48 + 0.644 − 0 − 0)

= −0.96 J
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EXAMPLE 4.2

Again find the work required to carry 2C from B to A in the same field, but this time

use the straight-line path from B to A.

Solution. We start by determining the equations of the straight line. Any two of the

following three equations for planes passing through the line are sufficient to define

the line:

y − yB =
yA − yB

xA − xB

(x − xB)

z − zB =
z A − zB

yA − yB

(y − yB)

x − xB =
xA − xB

z A − zB

(z − zB)

From the first equation we have

y = −3(x − 1)

and from the second we obtain

z = 1

Thus,

W = −2

∫ 0.8

1

y dx − 2

∫ 0.6

0

x dy − 4

∫ 1

1

dz

= 6

∫ 0.8

1

(x − 1) dx − 2

∫ 0.6

0

(

1 −
y

3

)

dy

= −0.96 J

This is the same answer we found using the circular path between the same

two points, and it again demonstrates the statement (unproved) that the work done is

independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show that dy = −3 dx and

dx = − 1
3

dy. These substitutions may be made in the first two integrals, along with

a change in limits, and the answer may be obtained by evaluating the new integrals.

This method is often simpler if the integrand is a function of only one variable.

Note that the expressions for dL in our three coordinate systems use the dif-

ferential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in

Section 1.8, and spherical in Section 1.9):

dL = dx ax + dy ay + dz az (rectangular) (6)

dL = dρ aρ + ρ dφaφ + dz az (cylindrical) (7)

dL = dr ar + r dθ aθ + r sin θ dφ aφ (spherical) (8)

The interrelationships among the several variables in each expression are determined

from the specific equations for the path.
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Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried

in the field of an infinite line charge. No work is expected in the former case.

As a final example illustrating the evaluation of the line integral, we investigate

several paths that we might take near an infinite line charge. The field has been

obtained several times and is entirely in the radial direction,

E = Eρaρ =
ρL

2πε0ρ
aρ

First we find the work done in carrying the positive charge Q about a circular

path of radius ρb centered at the line charge, as illustrated in Figure 4.2a. Without

lifting a pencil, we see that the work must be nil, for the path is always perpendicular

to the electric field intensity, or the force on the charge is always exerted at right

angles to the direction in which we are moving it. For practice, however, we will set

up the integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the circular

path selected demands that dρ and dz be zero, so dL = ρ1 dφ aφ . The work is then

W = −Q

∫ final

init

ρL

2πε0ρ1

aρ · ρ1 dφ aφ

= −Q

∫ 2π

0

ρL

2πε0

dφ aρ · aφ = 0

We will now carry the charge from ρ = a to ρ = b along a radial path

(Figure 4.2b). Here dL = dρ aρ and

W = −Q

∫ final

init

ρL

2πε0ρ
aρ · dρ aρ = −Q

∫ b

a

ρL

2πε0

d ρ

ρ

or

W = −
QρL

2πε0

ln
b

a

Because b is larger than a, ln (b/a) is positive, and the work done is negative,

indicating that the external source that is moving the charge receives energy.
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One of the pitfalls in evaluating line integrals is a tendency to use too many minus

signs when a charge is moved in the direction of a decreasing coordinate value. This is

taken care of completely by the limits on the integral, and no misguided attempt should

be made to change the sign of dL. Suppose we carry Q from b to a (Figure 4.2b).

We still have dL = dρ aρ and show the different direction by recognizing ρ = b as

the initial point and ρ = a as the final point,

W = −Q

∫ a

b

ρL

2πε0

d ρ

ρ
=

QρL

2πε0

ln
b

a

This is the negative of the previous answer and is obviously correct.

D4.2. Calculate the work done in moving a 4-C charge from B(1, 0, 0) to

A(0, 2, 0) along the path y = 2 − 2x , z = 0 in the field E = (a) 5ax V/m;

(b) 5xax V/m; (c) 5xax + 5yayV/m.

Ans. 20 J; 10 J; −30 J

D4.3. We will see later that a time-varying E field need not be conservative.

(If it is not conservative, the work expressed by Eq. (3) may be a function of the

path used.) Let E = yax V/m at a certain instant of time, and calculate the work

required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line

segments joining: (a) (1, 3, 5) to (2, 3, 5) to (2, 0, 5) to (2, 0, 3); (b) (1, 3, 5) to

(1, 3, 3) to (1, 0, 3) to (2, 0, 3).

Ans. −9 J; 0

4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done

by an external source in moving a charge Q from one point to another in an electric

field E, “Potential difference and work.”

W = −Q

∫ final

init

E · dL

In much the same way as we defined the electric field intensity as the force on a

unit test charge, we now define potential difference V as the work done (by an external

source) in moving a unit positive charge from one point to another in an electric field,

Potential difference = V = −
∫ final

init

E · dL (9)
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We have to agree on the direction of movement, and we do this by stating that

VAB signifies the potential difference between points A and B and is the work done in

moving the unit charge from B (last named) to A (first named). Thus, in determining

VAB , B is the initial point and A is the final point. The reason for this somewhat

peculiar definition will become clearer shortly, when it is seen that the initial point B

is often taken at infinity, whereas the final point A represents the fixed position of the

charge; point A is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is

defined as a more common unit, abbreviated as V. Hence the potential difference

between points A and B is

VAB = −
∫ A

B

E · dL V (10)

and VAB is positive if work is done in carrying the positive charge from B to A.

From the line-charge example of Section 4.2 we found that the work done in

taking a charge Q from ρ = b to ρ = a was

W =
QρL

2πε0

ln
b

a

Thus, the potential difference between points at ρ = a and ρ = b is

Vab =
W

Q
=

ρL

2πε0

ln
b

a
(11)

We can try out this definition by finding the potential difference between points

A and B at radial distances rA and rB from a point charge Q. Choosing an origin at Q,

E = Er ar =
Q

4πε0r2
ar

and

dL = dr ar

we have

VAB = −
∫ A

B

E · dL = −
∫ rA

rB

Q

4πε0r2
dr =

Q

4πε0

(

1

rA

−
1

rB

)

(12)

If rB > rA, the potential difference VAB is positive, indicating that energy is

expended by the external source in bringing the positive charge from rB to rA. This

agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the potential, or absolute potential, of a point,

rather than the potential difference between two points, but this means only that we

agree to measure every potential difference with respect to a specified reference point

that we consider to have zero potential. Common agreement must be reached on

the zero reference before a statement of the potential has any significance. A person

having one hand on the deflection plates of a cathode-ray tube that are “at a potential

of 50 V” and the other hand on the cathode terminal would probably be too shaken up
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to understand that the cathode is not the zero reference, but that all potentials in that

circuit are customarily measured with respect to the metallic shield about the tube.

The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical po-

tential measurements is “ground,” by which we mean the potential of the surface

region of the earth itself. Theoretically, we usually represent this surface by an infinite

plane at zero potential, although some large-scale problems, such as those involving

propagation across the Atlantic Ocean, require a spherical surface at zero potential.

Another widely used reference “point” is infinity. This usually appears in theo-

retical problems approximating a physical situation in which the earth is relatively far

removed from the region in which we are interested, such as the static field near the

wing tip of an airplane that has acquired a charge in flying through a thunderhead, or

the field inside an atom. Working with the gravitational potential field on earth, the

zero reference is normally taken at sea level; for an interplanetary mission, however,

the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero

reference when cylindrical symmetry is present and infinity proves inconvenient. In a

coaxial cable the outer conductor is selected as the zero reference for potential. And,

of course, there are numerous special problems, such as those for which a two-sheeted

hyperboloid or an oblate spheroid must be selected as the zero-potential reference,

but these need not concern us immediately.

If the potential at point A is VA and that at B is VB , then

VAB = VA − VB (13)

where we necessarily agree that VA and VB shall have the same zero reference point.

D4.4. An electric field is expressed in rectangular coordinates by E = 6x2ax +
6yay +4azV/m. Find: (a) VM N if points M and N are specified by M(2, 6, −1)

and N (−3, −3, 2); (b) VM if V = 0 at Q(4, −2, −35); (c) VN if V = 2 at

P(1, 2, −4).

Ans. −139.0 V; −120.0 V; 19.0 V

4.4 THE POTENTIAL FIELD
OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between

two points located at r = rA and r = rB in the field of a point charge Q placed

at the origin. How might we conveniently define a zero reference for potential? The

simplest possibility is to let V = 0 at infinity. If we let the point at r = rB recede to

infinity, the potential at rA becomes

VA =
Q

4πε0rA
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or, as there is no reason to identify this point with the A subscript,

V =
Q

4πε0r
(14)

This expression defines the potential at any point distant r from a point charge Q

at the origin, the potential at infinite radius being taken as the zero reference. Returning

to a physical interpretation, we may say that Q/4πε0r joules of work must be done

in carrying a unit charge from infinity to any point r meters from the charge Q.

A convenient method to express the potential without selecting a specific zero

reference entails identifying rA as r once again and letting Q/4πε0rB be a constant.

Then

V =
Q

4πε0r
+ C1 (15)

and C1 may be selected so that V = 0 at any desired value of r . We could also select

the zero reference indirectly by electing to let V be V0 at r = r0.

It should be noted that the potential difference between two points is not a func-

tion of C1.

Equations (14) and (15) represent the potential field of a point charge. The po-

tential is a scalar field and does not involve any unit vectors.

We now define an equipotential surface as a surface composed of all those points

having the same value of potential. All field lines would be perpendicular to such a

surface at the points where they intersect it. Therefore, no work is involved in moving

a unit charge around on an equipotential surface. The equipotential surfaces in the

potential field of a point charge are spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that it

is an inverse-distance field, whereas the electric field intensity was found to be an

inverse-square-law function. A similar result occurs for the gravitational force field

of a point mass (inverse-square law) and the gravitational potential field (inverse

distance). The gravitational force exerted by the earth on an object one million miles

from it is four times that exerted on the same object two million miles away. The

kinetic energy given to a freely falling object starting from the end of the universe

with zero velocity, however, is only twice as much at one million miles as it is at two

million miles.

D4.5. A 15-nC point charge is at the origin in free space. Calculate V1 if point

P1 is located at P1(−2, 3, −1) and (a) V = 0 at (6, 5, 4); (b) V = 0 at infinity;

(c) V = 5 V at (2, 0, 4).

Ans. 20.67 V; 36.0 V; 10.89 V
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4.5 THE POTENTIAL FIELD OF A SYSTEM OF
CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive

charge from the zero reference to the point, and we have suspected that this work, and

hence the potential, is independent of the path taken. If it were not, potential would

not be a very useful concept.

Let us now prove our assertion. We do so by beginning with the potential field

of the single point charge for which we showed, in Section 4.4, the independence

with regard to the path, noting that the field is linear with respect to charge so that

superposition is applicable. It will then follow that the potential of a system of charges

has a value at any point which is independent of the path taken in carrying the test

charge to that point.

Thus the potential field of a single point charge, which we shall identify as Q1

and locate at r1, involves only the distance |r − r1| from Q1 to the point at r where

we are establishing the value of the potential. For a zero reference at infinity, we have

V (r) =
Q1

4πε0|r − r1|

The potential arising from two charges, Q1 at r1 and Q2 at r2, is a function only of

|r − r1| and |r − r2|, the distances from Q1 and Q2 to the field point, respectively.

V (r) =
Q1

4πε0|r − r1|
+

Q2

4πε0|r − r2|

Continuing to add charges, we find that the potential arising from n point charges is

V (r) =
n

∑

m=1

Qm

4πε0|r − rm |
(16)

If each point charge is now represented as a small element of a continuous volume

charge distribution ρν�ν, then

V (r) =
ρν(r1)�ν1

4πε0|r − r1|
+

ρν(r2)�ν2

4πε0|r − r2|
+ · · · +

ρν(rn)�νn

4πε0|r − rn|

As we allow the number of elements to become infinite, we obtain the integral

expression

V (r) =
∫

vol

ρν(r′) dv ′

4πε0|r − r′|
(17)

We have come quite a distance from the potential field of the single point charge,

and it might be helpful to examine Eq. (17) and refresh ourselves as to the meaning of

each term. The potential V (r) is determined with respect to a zero reference potential

at infinity and is an exact measure of the work done in bringing a unit charge from
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infinity to the field point at r where we are finding the potential. The volume charge

density ρv (r′) and differential volume element dv ′ combine to represent a differential

amount of charge ρν(r′) dv ′ located at r′. The distance |r − r′| is that distance from

the source point to the field point. The integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface charge, the

integration is along the line or over the surface:

V (r) =
∫

ρL (r′) d L ′

4πε0|r − r′|
(18)

V (r) =
∫

S

ρS(r′) d S′

4πε0|r − r′|
(19)

The most general expression for potential is obtained by combining Eqs.(16)–(19).

These integral expressions for potential in terms of the charge distribution should

be compared with similar expressions for the electric field intensity, such as Eq. (15)

in Section 2.3:

E(r) =
∫

vol

ρν(r′) dv ′

4πε0|r − r′|2
r − r′

|r − r′|

The potential again is inverse distance, and the electric field intensity, inverse-

square law. The latter, of course, is also a vector field.

EXAMPLE 4.3

To illustrate the use of one of these potential integrals, we will find V on the z axis for

a uniform line charge ρL in the form of a ring, ρ = a, in the z = 0 plane, as shown

in Figure 4.3.

Solution. Working with Eq. (18), we have d L ′ = adφ′, r = zaz , r′ = aaρ , |r−r′| =√
a2 + z2, and

V =
∫ 2π

0

ρLa dφ′

4πε0

√
a2 + z2

=
ρLa

2ε0

√
a2 + z2

For a zero reference at infinity, then:

1. The potential arising from a single point charge is the work done in carrying a

unit positive charge from infinity to the point at which we desire the potential,

and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of

the individual potential fields arising from each charge.

3. The potential arising from a number of point charges or any continuous charge

distribution may therefore be found by carrying a unit charge from infinity to

the point in question along any path we choose.
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Figure 4.3 The potential field of a ring of uniform line

charge density is easily obtained from V =
∫

ρL (r′) dL ′/

(4πε0|r − r′|).

In other words, the expression for potential (zero reference at infinity),

VA = −
∫ A

∞
E · dL

or potential difference,

VAB = VA − VB = −
∫ A

B

E · dL

is not dependent on the path chosen for the line integral, regardless of the source of

the E field.

This result is often stated concisely by recognizing that no work is done in

carrying the unit charge around any closed path, or
∮

E · dL = 0 (20)

A small circle is placed on the integral sign to indicate the closed nature of the

path. This symbol also appeared in the formulation of Gauss’s law, where a closed

surface integral was used.

Equation (20) is true for static fields, but we will see in Chapter 9 that Faraday

demonstrated it was incomplete when time-varying magnetic fields were present. One

of Maxwell’s greatest contributions to electromagnetic theory was in showing that a

time-varying electric field produces a magnetic field, and therefore we should expect

to find later that Eq. (20) is not correct when either E or the magnetic field varies

with time.

Restricting our attention to the static case where E does not change with time,

consider the dc circuit shown in Figure 4.4. Two points, A and B, are marked, and



CHAPTER 4 Energy and Potential 89

Figure 4.4 A simple dc-circuit problem that must be

solved by applying
∮

E · dL = 0 in the form of Kirchhoff’s

voltage law.

(20) states that no work is involved in carrying a unit charge from A through R2 and

R3 to B and back to A through R1, or that the sum of the potential differences around

any closed path is zero.

Equation (20) is therefore just a more general form of Kirchhoff’s circuital law

for voltages, more general in that we can apply it to any region where an electric

field exists and we are not restricted to a conventional circuit composed of wires,

resistances, and batteries. Equation (20) must be amended before we can apply it to

time-varying fields.

Any field that satisfies an equation of the form of Eq. (20), (i.e., where the closed

line integral of the field is zero) is said to be a conservative field. The name arises from

the fact that no work is done (or that energy is conserved) around a closed path. The

gravitational field is also conservative, for any energy expended in moving (raising)

an object against the field is recovered exactly when the object is returned (lowered)

to its original position. A nonconservative gravitational field could solve our energy

problems forever.

Given a nonconservative field, it is of course possible that the line integral may

be zero for certain closed paths. For example, consider the force field, F = sin πρ aφ .

Around a circular path of radius ρ = ρ1, we have dL = ρ dφ aφ , and

∮

F · dL =
∫ 2π

0

sin πρ1aφ · ρ1dφ aφ =
∫ 2π

0

ρ1 sin πρ1 dφ

= 2πρ1 sin πρ1

The integral is zero if ρ1 = 1, 2, 3, . . . , etc., but it is not zero for other values of ρ1,

or for most other closed paths, and the given field is not conservative. A conservative

field must yield a zero value for the line integral around every possible closed path.

D4.6. If we take the zero reference for potential at infinity, find the potential

at (0, 0, 2) caused by this charge configuration in free space (a) 12 nC/m on the

line ρ = 2.5 m, z = 0; (b) point charge of 18 nC at (1, 2, −1); (c) 12 nC/m on

the line y = 2.5, z = 0, −1.0 < x < 1.0.

Ans. 529 V; 43.2 V; 66.3 V
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4.6 POTENTIAL GRADIENT

We now have two methods of determining potential, one directly from the electric field

intensity by means of a line integral, and another from the basic charge distribution

itself by a volume integral. Neither method is very helpful in determining the fields

in most practical problems, however, for as we will see later, neither the electric field

intensity nor the charge distribution is very often known. Preliminary information is

much more apt to consist of a description of two equipotential surfaces, such as the

statement that we have two parallel conductors of circular cross section at potentials

of 100 and −100 V. Perhaps we wish to find the capacitance between the conductors,

or the charge and current distribution on the conductors from which losses may be

calculated.

These quantities may be easily obtained from the potential field, and our im-

mediate goal will be a simple method of finding the electric field intensity from the

potential.

We already have the general line-integral relationship between these quantities,

V = −
∫

E · dL (21)

but this is much easier to use in the reverse direction: given E, find V .

However, Eq. (21) may be applied to a very short element of length �L along

which E is essentially constant, leading to an incremental potential difference �V,

�V =̇ −E · �L (22)

Now consider a general region of space, as shown in Figure 4.5, in which E and

V both change as we move from point to point. Equation (22) tells us to choose an

incremental vector element of length �L = �L aL and multiply its magnitude by

Figure 4.5 A vector incremental element of

length �L is shown making an angle of θ with an

E field, indicated by its streamlines. The sources

of the field are not shown.



CHAPTER 4 Energy and Potential 91

the component of E in the direction of aL (one interpretation of the dot product) to

obtain the small potential difference between the final and initial points of �L.

If we designate the angle between �L and E as θ , then

�V =̇ −E�L cos θ

We now pass to the limit and consider the derivative dV/d L . To do this, we need

to show that V may be interpreted as a function V (x, y, z). So far, V is merely the

result of the line integral (21). If we assume a specified starting point or zero reference

and then let our end point be (x, y, z), we know that the result of the integration is a

unique function of the end point (x, y, z) because E is a conservative field. Therefore

V is a single-valued function V (x, y, z). We may then pass to the limit and obtain

dV

d L
= −E cos θ

In which direction should �L be placed to obtain a maximum value of �V ?

Remember that E is a definite value at the point at which we are working and is

independent of the direction of �L. The magnitude �L is also constant, and our

variable is aL , the unit vector showing the direction of �L. It is obvious that the

maximum positive increment of potential, �Vmax, will occur when cos θ is −1, or

�L points in the direction opposite to E. For this condition,

dV

d L

∣

∣

∣

∣

max

= E

This little exercise shows us two characteristics of the relationship between E

and V at any point:

1. The magnitude of the electric field intensity is given by the maximum value of

the rate of change of potential with distance.

2. This maximum value is obtained when the direction of the distance increment is

opposite to E or, in other words, the direction of E is opposite to the direction in

which the potential is increasing the most rapidly.

We now illustrate these relationships in terms of potential. Figure 4.6 is intended

to show the information we have been given about some potential field. It does this by

showing the equipotential surfaces (shown as lines in the two-dimensional sketch).

We desire information about the electric field intensity at point P . Starting at P , we lay

off a small incremental distance �L in various directions, hunting for that direction

in which the potential is changing (increasing) the most rapidly. From the sketch, this

direction appears to be left and slightly upward. From our second characteristic above,

the electric field intensity is therefore oppositely directed, or to the right and slightly

downward at P . Its magnitude is given by dividing the small increase in potential by

the small element of length.

It seems likely that the direction in which the potential is increasing the most

rapidly is perpendicular to the equipotentials (in the direction of increasing potential),

and this is correct, for if �L is directed along an equipotential, �V = 0 by our
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Figure 4.6 A potential field is shown by its equipotential

surfaces. At any point the E field is normal to the

equipotential surface passing through that point and is

directed toward the more negative surfaces.

definition of an equipotential surface. But then

�V = −E · �L = 0

and as neither E nor �L is zero, E must be perpendicular to this �L or perpendicular

to the equipotentials.

Because the potential field information is more likely to be determined first, let

us describe the direction of �L, which leads to a maximum increase in potential

mathematically in terms of the potential field rather than the electric field intensity.

We do this by letting aN be a unit vector normal to the equipotential surface and

directed toward the higher potentials. The electric field intensity is then expressed in

terms of the potential,

E = −
dV

d L

∣

∣

∣

∣

max

aN (23)

which shows that the magnitude of E is given by the maximum space rate of change

of V and the direction of E is normal to the equipotential surface (in the direction of

decreasing potential).

Because dV/d L|max occurs when �L is in the direction of aN , we may remind

ourselves of this fact by letting

dV

d L

∣

∣

∣

∣

max

=
dV

d N

and

E = −
dV

d N
aN (24)

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process of

finding the electric field intensity from the potential. Both are descriptive of a general

procedure, and we do not intend to use them directly to obtain quantitative information.
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This procedure leading from V to E is not unique to this pair of quantities, however,

but has appeared as the relationship between a scalar and a vector field in hydraulics,

thermodynamics, and magnetics, and indeed in almost every field to which vector

analysis has been applied.

The operation on V by which −E is obtained is known as the gradient, and the

gradient of a scalar field T is defined as

Gradient of T = grad T =
dT

d N
aN (25)

where aN is a unit vector normal to the equipotential surfaces, and that normal is

chosen, which points in the direction of increasing values of T .

Using this new term, we now may write the relationship between V and E as

E = −grad V (26)

Because we have shown that V is a unique function of x, y, and z, we may take

its total differential

dV =
∂V

∂x
dx +

∂V

∂y
dy +

∂V

∂z
dz

But we also have

dV = −E · dL = −Ex dx − Ey dy − Ez dz

Because both expressions are true for any dx, dy, and dz, then

Ex = −
∂V

∂x

Ey = −
∂V

∂y

Ez = −
∂V

∂z

These results may be combined vectorially to yield

E = −
(

∂V

∂x
ax +

∂V

∂y
ay +

∂V

∂z
az

)

(27)

and comparing Eqs. (26) and (27) provides us with an expression which may be used

to evaluate the gradient in rectangular coordinates,

grad V =
∂V

∂x
ax +

∂V

∂y
ay +

∂V

∂z
az (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors

that are often incorrectly added to the divergence expression appear to be those that
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were incorrectly removed from the gradient. Once the physical interpretation of the

gradient, expressed by Eq. (25), is grasped as showing the maximum space rate of

change of a scalar quantity and the direction in which this maximum occurs, the vector

nature of the gradient should be self-evident.

The vector operator

∇ =
∂

∂x
ax +

∂

∂y
ay +

∂

∂z
az

may be used formally as an operator on a scalar, T , ∇T , producing

∇T =
∂T

∂x
ax +

∂T

∂y
ay +

∂T

∂z
az

from which we see that

∇T = grad T

This allows us to use a very compact expression to relate E and V,

E = −∇V (29)

The gradient may be expressed in terms of partial derivatives in other coordinate

systems through the application of its definition Eq. (25). These expressions are

derived in Appendix A and repeated here for convenience when dealing with problems

having cylindrical or spherical symmetry. They also appear inside the back cover.

∇V =
∂V

∂x
ax +

∂V

∂y
ay +

∂V

∂z
az (rectangular) (30)

∇V =
∂V

∂ρ
aρ +

1

ρ

∂V

∂φ
aφ +

∂V

∂z
az (cylindrical) (31)

∇V =
∂V

∂r
ar +

1

r

∂V

∂θ
aθ +

1

r sin θ

∂V

∂φ
aφ (spherical) (32)

Note that the denominator of each term has the form of one of the components of dL in

that coordinate system, except that partial differentials replace ordinary differentials;

for example, r sin θ dφ becomes r sin θ ∂φ.

We now illustrate the gradient concept with an example.

EXAMPLE 4.4

Given the potential field, V = 2x2 y − 5z, and a point P(−4, 3, 6), we wish to find

several numerical values at point P: the potential V , the electric field intensity E, the

direction of E, the electric flux density D, and the volume charge density ρν .

Solution. The potential at P(−4, 5, 6) is

VP = 2(−4)2(3) − 5(6) = 66 V
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Next, we may use the gradient operation to obtain the electric field intensity,

E = −∇V = −4xyax − 2x2ay + 5az V/m

The value of E at point P is

EP = 48ax − 32ay + 5az V/m

and

|EP | =
√

482 + (−32)2 + 52 = 57.9 V/m

The direction of E at P is given by the unit vector

aE,P = (48ax − 32ay + 5az)/57.9

= 0.829ax − 0.553ay + 0.086az

If we assume these fields exist in free space, then

D = ε0E = −35.4xy ax − 17.71x2 ay + 44.3 az pC/m3

Finally, we may use the divergence relationship to find the volume charge density that

is the source of the given potential field,

ρν = ∇ · D = −35.4y pC/m3

At P , ρν = −106.2 pC/m3.

D4.7. A portion of a two-dimensional (Ez = 0) potential field is shown in

Figure 4.7. The grid lines are 1 mm apart in the actual field. Determine approx-

imate values for E in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans. −1075ay V/m; −600ax − 700ay V/m; −500ax − 650ay V/m

D4.8. Given the potential field in cylindrical coordinates, V =
100

z2 + 1
ρ cos φV,

and point P at ρ = 3 m, φ = 60◦, z = 2 m, find values at P for (a) V ; (b) E;

(c) E ; (d) dV/d N ; (e) aN ; ( f ) ρν in free space.

Ans. 30.0 V; −10.00aρ +17.3aφ +24.0azV/m; 31.2 V/m; 31.2 V/m; 0.32aρ −0.55aφ

− 0.77az ; −234 pC/m3

4.7 THE ELECTRIC DIPOLE

The dipole fields that we develop in this section are quite important because they

form the basis for the behavior of dielectric materials in electric fields, as discussed

in Chapter 6, as well as justifying the use of images, as described in Section 5.5 of

Chapter 5. Moreover, this development will serve to illustrate the importance of the

potential concept presented in this chapter.

An electric dipole, or simply a dipole, is the name given to two point charges of

equal magnitude and opposite sign, separated by a distance that is small compared to
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Figure 4.7 See Problem D4.7.

the distance to the point P at which we want to know the electric and potential fields.

The dipole is shown in Figure 4.8a. The distant point P is described by the spherical

coordinates r, θ, and φ = 90◦, in view of the azimuthal symmetry. The positive and

negative point charges have separation d and rectangular coordinates (0, 0, 1
2
d) and

(0, 0, − 1
2
d), respectively.

So much for the geometry. What would we do next? Should we find the total

electric field intensity by adding the known fields of each point charge? Would it be

easier to find the total potential field first? In either case, having found one, we will

find the other from it before calling the problem solved.

If we choose to find E first, we will have two components to keep track of in

spherical coordinates (symmetry shows Eφ is zero), and then the only way to find V

from E is by use of the line integral. This last step includes establishing a suitable zero

reference for potential, since the line integral gives us only the potential difference

between the two points at the ends of the integral path.

On the other hand, the determination of V first is a much simpler problem.

This is because we find the potential as a function of position by simply adding the

scalar potentials from the two charges. The position-dependent vector magnitude and

direction of E are subsequently evaluated with relative ease by taking the negative

gradient of V.

Choosing this simpler method, we let the distances from Q and −Q to P be R1

and R2, respectively, and write the total potential as

V =
Q

4πε0

(

1

R1

−
1

R2

)

=
Q

4πε0

R2 − R1

R1 R2
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Figure 4.8 (a) The geometry of the problem of an

electric dipole. The dipole moment p = Qd is in the az

direction. (b) For a distant point P, R1 is essentially

parallel to R2, and we find that R2 − R1 = d cos θ.

Note that the plane z = 0, midway between the two point charges, is the locus of

points for which R1 = R2, and is therefore at zero potential, as are all points at

infinity.

For a distant point, R1 =̇ R2, and the R1 R2 product in the denominator may be

replaced by r2. The approximation may not be made in the numerator, however,

without obtaining the trivial answer that the potential field approaches zero as we go

very far away from the dipole. Coming back a little closer to the dipole, we see from

Figure 4.8b that R2 − R1 may be approximated very easily if R1 and R2 are assumed

to be parallel,

R2 − R1 =̇ d cos θ
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The final result is then

V =
Qd cos θ

4πε0r2
(33)

Again, we note that the plane z = 0 (θ = 90◦) is at zero potential.

Using the gradient relationship in spherical coordinates,

E = −∇V = −
(

∂V

∂r
ar +

1

r

∂V

∂θ
aθ +

1

r sin θ

∂V

∂φ
aφ

)

we obtain

E = −
(

−
Qd cos θ

2πε0r3
ar −

Qd sin θ

4πε0r3
aθ

)

(34)

or

E =
Qd

4πε0r3
(2 cos θ ar + sin θ aθ ) (35)

These are the desired distant fields of the dipole, obtained with a very small

amount of work. Any student who has several hours to spend may try to work the

problem in the reverse direction—the authors consider the process too long and de-

tailed to include here, even for effect.

To obtain a plot of the potential field, we choose a dipole such that

Qd/(4πε0) = 1, and then cos θ = V r2. The colored lines in Figure 4.9 indicate

equipotentials for which V = 0, +0.2, +0.4, +0.6, +0.8, and +1, as indicated.

The dipole axis is vertical, with the positive charge on the top. The streamlines for

the electric field are obtained by applying the methods of Section 2.6 in spherical

coordinates,

Eθ

Er

=
r dθ

dr
=

sin θ

2 cos θ

or

dr

r
= 2 cot θ dθ

from which we obtain

r = C1 sin2 θ

The black streamlines shown in Figure 4.9 are for C1 = 1, 1.5, 2, and 2.5.

The potential field of the dipole, Eq. (33), may be simplified by making use of

the dipole moment. We first identify the vector length directed from −Q to +Q as d
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Figure 4.9 The electrostatic field of a point dipole with its moment in the az

direction. Six equipotential surfaces are labeled with relative values of V .

and then define the dipole moment as Qd and assign it the symbol p. Thus

p = Qd (36)

The units of p are C · m.

Because d · ar = d cos θ , we then have

V =
p · ar

4πε0r2
(37)

This result may be generalized as

V =
1

4πε0|r − r′|2
p ·

r − r′

|r − r′|
(38)

where r locates the field point P , and r′ determines the dipole center. Equation (38)

is independent of any coordinate system.


