Lec. 1.

Components of Electric Power Systems

The intention of this lecture is to lay the groundwork for the study of
electric power systems. This is done by developing some basic tools involving
concepts, definitions, and some procedures fundamental to electric power
systems. The lecture can be considered as a simple review of topics that will
be utilized throughout this work. We start by introducing the principal

electrical quantities that we will deal with in subsequent lectures.

2.2 Power Concepts

2.2.1 Single-Phase Systems

The electric power systems specialist is in many instances more
concerned with electric power in the circuit rather than the currents. To study
steady-state behavior of circuits, some further definitions are necessary.

Consider a sinusoidal voltage, v (t) in given by

(1)

vit) =V, coslwt)

ilt)=1, coslewt—0o) 2)

Note that in this case, the current lags the voltage by an angle ¢. The

instantaneous power is defined as

p[f}: W) rff1 (3)

plt)=T, coslwt) I coslws—o)
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Figure 2.1 Current, Voltage, and Power Plotted Versus Time.

The angle ¢ in these equations is positive for current lagging the voltage and
negative for current leading the voltage. Using the trigonometric identity
cosc-cos 3 = Hc:}s[ﬂ'—ﬁ}+cm{c{'+,ﬁ']] )

the instantaneous power can be written as:

p[r}: Fmr}j’" [c::rs, o+ cos(2w1 —t:f)]] (4)

A more useful quantity is the average power that is being delivered.
This can be obtained by averaging the instantaneous power over a specified
time-period, typically for one cycle. Since the average of cos (2ot — @) is zero,

through one complete cycle, the average power, P, becomes

v, I (5)

m

P=

cos ¢

It is more convenient to use the effective (rms) values of voltage and
current than the maximum values. Substituting V,, = \2 Vims and |, = \2 lms »

we get



P=V_ I_ cosdg (6)

Fz s
where, cos (¢ ) is called the power factor (PF).

Lagging power factor means the current lags the voltage by an angle o,
see Figure 2.2. Leading power factor means the current leads the voltage by an

angle ¢, see Figure 2.3.
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Figure 2.2 Phasor Diagram for  Figure 2.3 Phasor Diagram for
Lagging Power Factor. Leading Power Factor.

COMPLEX POWER

If the phasor expressions for voltage and current are known, the
calculation of real and reactive power is accomplished conveniently in
complex form. For a certain load or part of a circuit, the rms values of the

voltage drop and the current flow are expressed as:
V= Z£0° and I=1/-¢
It is common convention in the electric power industry to set the voltage angle

as the angular reference. The complex power or the apparent power S is

defined as the product of voltage times the conjugate of current, or
S=V.-I'=V -1£¢ (7)
S=V -Tcoso+ V- Ismnp

where ¢ is the phase angle between the voltage and current. Equation 7 can be

written as:



S=P+;0 (774) ®)
Where
P=|V Icoslp) (W)

FRY

s ; (9)
O=V - -Ismlg)  (Vdr)

The power factor is therefore:
P

. ) = . Q/ ]} - P B
s) = cos| arctan = == 10

POWER TRIANGLE

Equation 8 suggests a graphical method of obtaining the overall P, Q,
and phase angle, ¢, for several loads in parallel. A power triangle can be
drawn for an inductive load as shown in Figure 2.4. The signs of P and Q are
important in knowing the direction of the power flow, that is, whether power

1s being generated or absorbed when a voltage and current are specified.
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Figure 2.4 Power Triangle for an Inductive Load.



Lec. 2.

EXAMPLE 2.1
Consider the circuit shown in Figure 2.5 with the following parameters:

R=0.5Q L=2.122 mH

C=1600 n F V=100£ 0°V

—_— +
+ Is R
0 ‘{;: c “l _
- L
N

Figure 2.5 Circuit of Example 2.1.

Find the following: (a) the source current, (b) the active, reactive, and

apparent power into the circuit, (c) the power factor of the circuit.

a) source current

N 2 100.£0°V
' R+jeL 05Q+(377c/s)2.122x107 HJ

L=V-(joC)=7(100V)377r/s)1.6x107 F)=60.3290° A

ALY

I.=1+1,=1060£-580A+603.90" A=635-278A

=106.02-58.0° A

b) power flows

S=V-I"=(100£0° V)(63.5£27.8° A) = 6350£27.8° VA
$ =5617+ 72962 VA

P=561TW

Q = 2962 Var



¢) power factor

¢ =27.8°
PF =cosl@) =cos(27.8°)= 088 lagging

2.2.2 Three-Phase Systems

The major assumption of all the electric power presently used is
generated, transmitted, and distributed using balanced three-phase voltage
systems. Three-phase operation is preferable to single-phase because a three-
phase system is more efficient than a single-phase system, and the flow of
power is constant.

A balanced three-phase voltage system is composed of three-single
phase voltage sources having the same magnitude and frequency but time-
displaced from one another by 120° of a cycle as shown in the phasor
diagrams of Figure 2.6.
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Figure 2.6 Phasor Diagrams of a Balanced Three-Phase System.

There are two possible connections of loads and sources in three-phase
systems: wye-connection and delta-connection. Figure 2.7 shows the two
types of connections for three-identical impedances.

Because of the connections, new voltages and current quantities can be

defined. Starting with the voltage, the line voltage or line-to-line voltage is



that quantity between two supply lines or load terminals. For voltage
variables, line-to-line quantities have subscripts with two phases (i.e., ab, bc,
or ca). The line-to-neutral or line-to-ground voltage is that quantity between a
supply line and the neutral or ground node of the circuit. The voltage variables
for these have subscripts of only one phase or one phase and n for neutral or g
for ground. For currents, a similar convention is used. A current flowing
through an impedance or source between two lines is given a double subscript
notation denoting the two phases. A current flowing though an impedance or
source between a line and the neutral point may be either a single subscript or
one followed by an n. A line current flowing from a source to a load may be a
single or a double 4

subscript notation denoting the particular phase or the symbols

representing the nodes at each end of the line (i.e., a or Aa).

Figure 2.7 (a) Wye-Connected Load (b) Delta-Connected Load
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CURRENT AND VOLTAGE RELATIONS IN THE WYE CONNECTION

The voltage appearing between any two of the line terminals a, b, and ¢
have different relationships in magnitude and phase to the voltages appearing
between any one terminal and the neutral point n. The set of voltages V., Vi,
and V., are called the line voltages, and the set of voltages V., Vi, and Vg,
are referred to as the phase voltages. Analysis of a phasor diagram provides

the required relationships.

Ven =Vp £ 120° Vap =43 Vp £ 30°

Vea =43V, £ 150°

Vin = Vg £ -120°

Ve = 43 Vp £ -90°

L J

Figure 2.8 Phasor Diagram of the Phase and Line Voltages of a Wye-Connection.
The effective values of the phase voltage are shown in Figure 2.8 as
Van, Vbn, and Ven. Each has the same magnitude, and each is displaced 120°

from the other two phasors. The relation between the line voltage and the

phase voltage at the terminal a and b can be written as:

Fab = I;I.;L'! - Fﬁ.'!
=V,£0° -V, £ -120° (11)
=+f3.7,230°
Similarly,



V, =3V, 2-90°
V., =-13-V,2150°

Thus the relation between line-to-line voltage, V| and phase voltage Vp for a

balanced wye-connected, three-phase voltage system is
V, =3-¥,£+30° (12)

The current flowing out of a line terminal is the same current that is
flowing through the phase terminal. Thus the relation between the line current

I;. and phase current Ip for a wye-connected, three-phase system is

Iy =1, (13)

CURRENT AND VOLTAGE RELATIONS IN THE DELTA CONNECTION

Consider now the case when three single-phase sources are rearranged
to form a three-phase delta connection as shown in Figure 2.9. It is clear from

the circuit shown that the line and phase voltages are the same. Thus:

v, =V (14)

P

Figure 2.9 Delta-Connected, Three-Phase Source.

9



The phase and line currents, however, are not identical and the relationships

between them can be obtained as:

I,=1,20°
I, =1,£-120°
I,=1,2120°

Also, from Figure 2.9, the relation between the line and phase currents can be

obtained as:
I =I,-1, =IF112{J':'—IF.£GE'
= 3.1,150°

Similarly,
I, =~3-1,230°
I =+3-1,2-90°

The phasor diagram in Figure 2.10 illustrates these relations. Thus the relation

between line and phase currents for a balanced delta-connected system is:
I, =+3-1,2+30° (15)
Note that in the equations above, Vi, Vp, I, and Ip are the rms or

effective values of voltages and currents.
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La=Ip £ 1207 L=v31L £30°

la=v3 1, £ 150°

I-:I?-=':[ﬂ'b "._.q______.._.._.. S I-E...:I=I:_I £ Dﬂl

Ite =T £-1207

L.=431, £ -90°

L J

Figure 2.10 Relations between Phase and Line Currents in a Delta Connection.

POWER RELATIONSHIPS

Assume that a balanced three-phase voltage source is supplying a

balanced load. The three sinusoidal phase voltages can be written as:
V,(1)=+2 -V, sin(ar)

V, () =2 -V, sinlwr —120°)

V.(t) =~2 -V, sinfar +120°)
with the currents given by

1,5y =2 -1, sin(or—¢)

I,(0)=+2-1, sin(wr-120°-¢)

I.(f) =2 I, sin(ex +120° - ¢)

where ¢ is the phase angle between the current and voltage in each phase or
the power factor angle.

The three-phase power can be defined as:

P, =V, I

ig a

ccos@+F, I, -coso+ TV, -1, -cosg

11



Using a trigonometric identity, we get the following:

P, =V,I,{3cos¢ —[cos(2ax — )+ cos(2ar — 240 — ¢ )+ cos(2er + 240— o)}

The summation of the last three terms, in the above equation, is zero. Thus the

three-phase power can be obtained as:
P, =3-V,1,coslg) (16)

In wye-connected systems, Ip =1 and V, =V V3, and in delta-connected
systems, Ip = IL/\/3 and Vp =V, . Thus, the power equation, Equation 16, reads
in terms of line quantities:

B, = .3 V.1, cosld) (17)
Note that Equations 16 and 17 apply for both wye-and delta-connected

systems.

COMPLEX POWER

The above analysis can be extended to include the reactive power, Q, or

to get the apparent power, S, for a three-phase system.
S_,ﬁ_:ll’ﬁ-i"; (18)
BT, I
If

v, =,

£0° and I, =|I,|£~¢ . then
Sy =3V, |1, |20
or in complex notation:
S,y = 3|rf; HIJ{C&&;& + jsing)
=Py + 7054
where

12



Py =37, |1,|cos0 =3
sin @ = £|F£

EXAMPLE 2.2

E'.r
l.-|-

II|EDEI;$' (19)

Oy = 3‘|F_:

I:,

I,

s111 () (20)

A wye-connected, balanced three-phase load consisting of three
impedances of 10Q£30° each as shown in Figure 2.11, is supplied with a
balanced set of line-to-neutral voltages:

V., =220F£0°

V,, =220F£240°

V., =220F£120°

(a) Calculate the phasor currents in each line, b) calculate the line-to-
line phasor voltages and show the corresponding phasor diagram, and c)

calculate the apparent power, active power, and reactive power supplied to the

load.

—_—
I3
=100 £30°

Figure 2.11 Load Connection for Example 2.2.

a) The phase currents of the loads are obtained as:

13



= 2V 5y as-30°
™ T 10QL30°

| 220V.£240°
1002300

 2207.£120°

@ 100230

=224.210°

=224.290°

b) The line voltages are obtained as

Fﬂb = I’{r - Fb
= 220V.£0° — 220V .£240°
= 220-+3V£30°

Or

v, =3 |05, +30°)
=220 +37.£0° + 30°
=220-/37.£30°

Similarlry

Vye =3 -V,,] 218, +30°)
= 220 +/3V.£240° +30°
=220-+3V£ - 90°

V., =~{3-|V.,|£(8,, +30°)
= 220 3V.£120° +30°
=220-4/37.£150°

14



Vea Va =220 Y3 V £ 30°

V= 220V 2 0°

Fiaure 2.12 Relations between Phase and Line Voltaaes in a Wve-Connection.
c¢) The powers are given by:
Sm =3 F’F IH =3. l'f’ﬁ,_,i -I;_,i

= 3{22%’5&“]{22&53{?*] =14520.0.230°

=12374.69+ ;72600 VA
PE¢ =12574.69 w
Qm =7260.0 VAr

EXAMPLE 2.3 Lec.4.

A delta-connected, balanced three-phase load consisting of three

impedances of 10£ 30°Q each as shown in Figure 2.13, is supplied with a
balanced set of line-to-line voltages:

V., =~3-22030°V

V, =-{3-220£-90°V
V., =+{3-220£150°V

cd
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a) Calculate the phasor voltage across each phase load, b) calculate the phase
and line currents and show the corresponding phasor diagram, and c) calculate

the apparent power, active power, and reactive power supplied to the load.

Figure 2.13 Load connection for example 2.3.

a) For a delta connected load,
Ve =V1z
V., =+/3-220£30°V
V, =~{3-220L-90°V
V., =+f3-2202150°V
b) The phase currents in each of the impedances are:

.22 oy

I, = 3220430 =+3.2220°A
10£30° Q

I, =~3-222240° A

I, =+/3.22,120° A

The line currents can be obtained as:

"!T.:: = I.;'b - "!T-:'.::
= f3.22.20°=.{3.22/120° =662 -30° A

16



Or
I, =3-1,2-30°
I, =3-1,,2-30°=43(2243.4)20° - 30° = 6642 — 30°

Similarly,

I, =31, 2 -30°=664.210°
I.=+3.1,2-30°=664,90°

.-(... -. .'h
l-ll.' '..-\..
\
I\'.'l:l ‘If.'.
|llr,.
.'II‘.I
£ Ly =43 2220 A
D —>
N\ -0
.r".f "\. 1
.-"- Il‘"- .-..‘-. — a
L / g \ I =662-30° A
e ——— be

Figure 2.14 Relation between Phase and Line Currents in a Delta Connection.

c¢) The apparent, active, and reactive powers are:

SE¢=3I’;I; =3'I’rﬂﬁ '.I‘;

=33 -220.230° |43 -22.20°)= 43560.£30° VA
—37724.04+ j21780.0 VA

P, =37724.04 W

0,, =21780.0 VAR

17



2.3 Power System Representation

A major portion of the modern power system utilizes three-phase as
circuits and devices. A balanced three-phase system is solved as a single-
phase circuit made of one line and the neutral return. Standard symbols are
used to indicate the various components. The simplified one-line diagram is
called the single-line diagram. From the one-line diagram the impedance, or
reactance, diagram can be conveniently developed, as shown in the following
section. A further advantage of the one-line diagram is in the power flow
studies. The one-line diagram rather becomes second nature to power system

engineers as they attempt to visualize a widespread complex network.

generator or motor Q

transformer % E

fransmission line

o1l circwt brealer

air circuit brealer

static load ﬂ

delta connection
ungrounded wye connection \l/
grounded wye connection \4
Figure 2.15 Symbolic Representation of Elements of a Power System.

Using the symbols in Figure 2.15, a section of a one-line diagram of a

power system is shown in Figure 2.16.

18
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Figure 2.16 A One-Line Diagram of a Portion of a Power System.

2.3.1 Equivalent Circuit and Reactance Diagram

We note from Figure 2.16 that the power system components are:
generators, transformers, transmission lines, and loads. Equivalent circuits of
these components may then be interconnected to obtain a circuit
representation for the entire system. In other words, the one-line diagram may
be replaced by an impedance diagram or a reactance diagram (if resistances
are neglected).

Thus, corresponding to Figure 2.16, the impedance and reactance
diagrams are shown in Figures 2.17(a) and 2.17(b), respectively, on a per
phase basis. In the equivalent circuit of the components in Figure 2.17(a) is
based on the following assumptions:

1. A generator can be represented by a voltage source in series with an
inductive reactance. The internal resistance of the generator is
negligible compared to the reactance.

2. The motor load is inductive.

3. The static load has a lagging power factor.

4. A transformer is represented by a series impedance on a per phase basis.

5. The transmission line is of medium length and can be represented by a T

section.

19



The reactance diagram, shown in Figure 2.17(b), is drawn by neglecting
all the resistances, static loads, and capacitances of the transmission line.
Reactance diagrams are generally used for short-circuit calculation, whereas

the impedance diagram is used for power-flow studies.

Tranzformer Transmission Line Transformer

(Fenerators Motor &
Static Load
(a) Impedance Diagram
! ! !
| | |
—I—000 I
| | |
! i |
! ! !
! ! !
! ! !
! ! !
! ! !
! ! !
Generators = Transformer ' Transmission Line Transformer ' Motor &

Stafic Load

(b) Corresponding Reactance Diagram

Figure 2.17 Electrical Diagrams of the System Illustrated in Figure 2.16.
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