The Transformer

A transformer is a device that is based on magnetic coupling. Transformers
are used in both communication and power circuits. In communication cir-
cuits, the transformer is used to match impedances and eliminate dc signals
from portions of the system. In power circuits, transformers are used to estab-
lish ac voltage levels that facilitate the transmission, distribution, and con-
sumption of electrical power. A knowledge of the sinusoidal steady-state

behavior of the transformer is required in the analysis of both communication
and power systems. In this section, we will discuss the sinusoidal steady-state
behavior of the linear transformer, which is found primarily in communica-
tion circuits. And then . we will deal with the ideal transformer, which is
used to model the terromagnetic transformer found in power systems.
Before starting we make a useful observation. When analyzing circuits
containing mutual inductance use the meshor loop-current method for writ-
ing circuit equations. The node-voltage method is cumbersome to use when
mutual inductance in involved. This is because the currents in the various
coils cannot be written by inspection as functions of the node voltages.

The Analysis of a Linear Transformer Circuit
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& The frequency domain circuit model for a
transformer used to connect a load to a source.

A simple transformer is formed when two coils are wound on a single core
to ensure magnetic coupling. Figure shows the frequency-domain cir-
cuit model of a system that uses a transformer to connect a load to a
source. In discussing this circuit, we refer to the transformer winding con-
nected to the source as the primary winding and the winding connected to
the load as the secondary winding. Based on this terminology, the trans-
former circuit parameters are

R, = the resistance of the primary winding,

R; = the resistance of the secondary winding,

Ly = the self-inductance of the primary winding,
L, = the self-inductance of the secondary winding,
M = the mutual inductance.



The internal voltage of the sinusoidal source is V,, and the internal
impedance of the source is Z,. The impedance Z; represents the load con-
nected to the secondary winding of the transformer. The phasor currents
I, and I, represent the primary and secondary currents of the transformer,
respectively.

Analysis of the circuit in Figure consists of finding 1, and I, as func-
tions of the circuit parameters V,, Z, Ry, L. L;, R, M, Z;, and w. We are
also interested in finding the impedance seen looking into the transformer
from the terminals a.b. To find I, and I,. we first write the two mesh-cur-
rent equations that describe the circuit:

V, = (Z, + R, + joL)I; — joMI,,

0= —juMIl, + {R;l_ + jwl, + Z]_}]z.
To facilitate the algebraic manipulation of Egs. we let:

Z]] = .Z_T + R] + jﬂ)Ll,

Lo = Ry + jul, + 74,
where Z;, is the total self-impedance of the mesh containing the primary
winding of the transformer, and Z,; is the total self-impedance of the
mesh containing the secondary winding. Based on the notation introduced
in Equations above .the solutions forl; and I, are:
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To the internal source voltage V,, the impedance appears as V,/1;. or

v, Z1Z» + o"M? wM?
—=Z = =7 + .
]l int Zﬂ 11 Z}?_

The impedance at the terminals of the source is Z;,, — Z,. s0
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oM 7, =R, + juL, + w M

Lo =7F + )
. ! Zn (Ry + jol, + Zy)

Note that the impedance Z, is independent of the magnetic polarity
of the transformer. The reason is that the mutual inductance appears in
Eq. Zab as a squared quantity. This impedance is of particular interest
because it shows how the transformer affects the impedance of the load as
seen from the source. Without the transformer, the load would be con-
nected directly to the source, and the source would see a load impedance
of Z;: with the transformer, the load is connected to the source through
the transformer, and the source sees a load impedance that is a modified

version of Z;, as seen in the third term of Equation of Zab

Reflected Impedance

The third term in Eq. 9.64 is called the reflected impedance ( Z, ), because
it is the equivalent impedance of the secondary coil and load impedance
transmitted, or reflected, to the primary side of the transformer. Note that
the reflected impedance is due solely to the existence of mutual induc-
tance: that is, if the two coils are decoupled, M becomes zero, Z, becomes
zero, and Z, reduces to the self-impedance of the primary coil.

To consider reflected impedance in more detail, we first express the
load impedance in rectangular form:

L = R+ jX.

where the load reactance X carries its own algebraic sign. In other words,
AL is a positive number if the load is inductive and a negative number if
the load is capacitive. We now use Eq. to write the reflected imped-
ance in rectangular form:
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[(R: + Ry) — jlwl, + Xy)).



The derivation of Eq. takes advantage of the fact that, when Z; is
written in rectangular form, the self-impedance of the mesh containing the
secondary winding is

=R, + R + j(ng + X]_}

Now observe from Eq. that the self-impedance of the secondary
circuit is reflected into the primary circuit by a scaling factor of
(@M /| Zx|)*. and that the sign of the reactive component (wl, + Xy) is
reversed. Thus the linear transformer reflects the conjugate of the self-
impedance of the secondary circuit (Z5,) into the primary winding by a
scalar multiplier.

The parameters of a certain linear transformer are
Ry =2000,R,=1004, Ly =9H. L, = 4H. and
k = 0.5. The transformer couples an impedance
consisting of an 800 () resistor in series with a 1 puF
capacitor to a sinusoidal voltage source. The 300 V
(rms) source has an internal impedance of
500 + j100 £} and a frequency of 400 rad/s.

a) Construct a frequency-domain equivalent circuit
of the system.

b) Calculate the self-impedance of the primary
circuit.

¢) Calculate the self-impedance of the secondary
circuit.

d) Calculate the impedance reflected into the pri-
mary winding.

e) Calculate the scaling factor for the reflected
impedance.

f) Calculate the impedance seen looking into the
primary terminals of the transformer.

g) Calculate the Thévenin equivalent with respect
to the terminals c.d.
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Solution

a) Figure shows the frequency-domain equiva-
lent circuit. Note that the internal voltage of the
source serves as the reference phasor, and that
¥, and V; represent the terminal voltages of the
transformer. In constructing the circuit in
Figure ,we made the following calculations:

joLy = j(400)(9) = j3600 €.

joLs = j(400)(4) = 1600 O,
M = 05V(9)4) = 3H,

JoM = j(400)(3) = j1200 €,

1 10°
—— = —— = —j2500 Q).
joC _ jaoo !
1100 02
500 €1 j a 200 . 1000 800 €1
™ F ™ 4
300/0° V 3600 0 j16000 v, |:1;: —j2500 02

& The frequency-domain equivalent circuit for Example

b) The self-impedance of the primary circuit is
Zyp = 500 + j100 + 200 + 3600 = 700 + j3700 (1.
¢) The self-impedance of the secondary circuit is
Zy = 100 + j1600 + 800 — j2500 = 900 — j900 (1.

d) The impedance reflected into the primary
winding is

1200 2
Z, = | ———— | (900 + j900
‘ (I'}Dﬂ—f'iml)( 7500)

8
= a(gﬂﬂ + j900) = 800 + j800 (1.

) The scaling factor by which Z3, is reflected is /9.



f) The impedance seen looking into the primary ter-
minals of the transformer is the impedance of the
primary winding plus the reflected impedance; thus

Z, = 200 + j3600 + 800 + 800 = 1000 + j4400 £1.

g) The Thévenin voltage will equal the open circuit
value of V4. The open circuit value of V4 will

equal j1200 times the open circuit value of I,.
The open circuit value of 1, is

' 300 /07
17700 + 3700

= 79.67 /—79.29" mA.

Therefore
Vi, = j1200(79.67 / —79.29") % 0
= 95.60 /10.71° V.

The Thévenin impedance will be equal to the imped-
ance of the secondary winding plus the impedance

reflected from the primary when the voltage source is
replaced by a short-circuit. Thus

1200
700 + j3700|
= 171.09 + j1224.26 Q.

2
Zpy = 100 + j1600 + ( ) (700 — j3700)

The Thévenin equivalent is shown in Fig. 9.40.

171.09 2 J1224.26 1}
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& The Thévenin equivalent circuit for Example



The Ideal Transformer

An ideal transformer consists of two magnetically coupled coils having N,
and N turns, respectively, and exhibiting these three properties:

1. The coefficient of coupling is unity (k = 1).
2. The self-inductance of each coil is infinite (L, = L, = oo).
3. The coil losses, due to parasitic resistance, are negligible.

Determining the Voltage and Current Ratios

» joM ™
I et ’
Vv, ' jorly jwl,
N N, -
. *
(a)
Note in Fig (a) that the voltage at the terminals of the open-circuit

coil is entirely the result of the current in coil 1; therefore

'if'-g = _p'ﬂlM][
The current in coil 1 is
v
I, = _‘
Jol,
From Eqgs.
M
Vo, = —V
2 L 1

For unity coupling, the mutual inductance equals \L,L,, so Eqg.
becomes

'L,
v, = 2V
2 \ L] 1

For unity coupling, the flux linking coil 1 is the same as the flux linking

coil 2, so we need only one permeance to describe the self-inductance of
each coil. Thus Eq. becomes
| N3 N,
1 “Ir — -\-I-
1 _Nl 1

-‘_r = | —
27 VNl
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Voltage relationship for an ideal vV, V,
transformer p E = Fz
—*
L
Vi
L
Summing the voltages around the shorted coil of Fig. (b) yields
0= —joMl; + jol;l,,
from which.for k = 1,
L _ L, L L, N
IE M " L|L2 \‘ Ll erI"rl
Equation is equivalent to
ILiN; = ILN-. <« Current relationship for an ideal

transformer



Ideal

A The graphic symbol for an ideal transformer

Figure shows the graphic symbol for an ideal transformer. The
vertical lines in the symbol represent the layers of magnetic material from
which ferromagnetic cores are often made. Thus, the symbol reminds us
that coils wound on a ferromagnetic core behave very much like an ideal
transformer.

There are several reasons for this. The ferromagnetic material creates
a space with high permeance. Thus most of the magnetic flux is trapped
inside the core material, establishing tight magnetic coupling between
coils that share the same core. High permeance also means high self-
inductance, because L = N> P. Finally, ferromagnetically coupled coils
efficiently transfer power from one coil to the other. Efficiencies in excess
of 95% are common, so neglecting losses is not a crippling approximation
for many applications.

Determining the Polarity of the Voltage
and Current Ratios

If the coil voltages V; and V; are both positive or negative at the dot-
marked terminal, use a plus sign in Eq. Otherwise, use a nega-
tive sign.

If the coil currents 1, and I, are both directed into or out of the dot-

marked terminal, use a minus sign in Eq. Otherwise, use a
plus sign.

Dot convention for ideal transformers



The four circuits shown in Fig. illusrate these rules

L A E
Vi | LV,
= " 1deal | &
Vi_Y;
Ni N:
Nily = —Nsl,
(a)

Nl = N3l
(c)

The ratio of the turns on the two windings is an important parameter
of the ideal transformer. The turns ratio is defined as either N;/N; or

N5/ Ny: both ratios appear in various writings. In this text, we use a to
denote the ratio No/ Ny, or

N,

a= Nl.



Ny =500 N;=12500

. L] Ll T . 1:5 L L
v, ‘ v, Vv, ‘ A
— Ideal - — Ideal .
(a) (b)
Figure shows three ways to represent the turns ratio of an ideal

transformer. Figure (a) shows the number of turns in each coil explic-
itly. Figure . (b) shows that the ratio N;/N; is 5 to 1, and Fig. (c)
shows that the ratio No/N; is 1 to 1.



m - Analyzing an [deal Transformer Circuit

The load impedance connected to tne secondary
winding of the ideal transformer in Fie. = consists of
a 237.5 m(] resistor in series with a 125 pH inductor.

If the sinusoidal voltage source (v,) is generat-
ing the voltage 2500 cos 40k V. find the steady-
state expressions for: (a) 1y; (b) vz (c) i and (d) vs.

0250 5mH 237.5 mil
—_— +» 10:1 » - —= |3
UE(D 2 3135 uH
Ideall 4

Solution

a) We begin by constructing the phasor domain
equivalent circuit. The voltage source becomes
2500,/0° V: the 5 mH inductor converts to an
impedance of j2 {); and the 125 uH inductor
converts to an impedance of j0.05 (). The phasor
domain equivalent circuit is shown in Fig. 9.46.

It follows directly from Fig. U.46 that

2500,/0° = (0.25 + j2)I; + V,,

and
V; = 10V, = 10[(0.2375 + j0.05)I5].
Because
I, = 1014
we have

V, = 10(0.2375 + j0.05)101,
= (2375 + j9)I,.
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Therefore
2500 /0° = (24 + jT),
or
I, = 100 /—16.26" A.
Thus the steady-state expression for i, is

i) = 100 cos (400t — 16.26°) A.

b) V; = 2500/0° — (100 / —16.26°)(0.25 + j2)
= 2500 — 80 — j185

= 2420 — j185 = 2427.06 / —4.37° V.
Hence
v = 2427.06 cos (400 — 4.37°) V.
c) I, =101 = 1000 / —16.26° A.
Therefore

i> = 1000 cos (400 — 16.267) A.
d) V, = 0.1V, = 24271 /437" V,
giving
vy = 24271 cos (400t — 4.37°) V.



The Use of an Ideal Transformer for Impedance Matching

Ideal transformers can also be used to raise or lower the impedance level
of a load. The circuit shown in Fig. illustrates this. The impedance seen
by the practical voltage source (V, in series with Z,) is Vy/1,. The voltage
and current at the terminals of the load impedance (V; and 1,) are related
to V¥, and I by the transformer turns ratio; thus

Zs

& Using an ideal transformer to couple a
load to 2 source.

V.
T 2
¥, = —,
ia
and
I[ = ﬂlg.

Therefore the impedance seen by the practical source is

V1
I = I, &1
but the ratio V/1; is the load impedance 7, so Eq.9.90 becomes

1
v =—=7Z.
N = 4L

Thus, the ideal transformer’s secondary coil reflects the load impedance
back to the primary coil, with the scaling factor 1/ a’.

MNote that the ideal transformer changes the magnitude of Z; but does
not affect its phase angle. Whether Zy is greater or less than Z; depends
on the turns ratio a.

The 1deal transformer—or its practical counterpart, the ferromag-
netic core transformer—can be used to match the magnitude of Z; to
the magnitude of 7. ' ’



m Finding Maximum Power Transfer in a Circuit with an Ideal Transformer
The variable resistor in the circuit in Figure  is
adjusted until maximum average power is delivered
to R I-

a) What is the value of Ry in ohms?

b) What is the maximum average power (in watts)
delivered to R;?

a) We first find the Thévenin equivalent with
respect to the terminals of R;. The circuit for
determining the open circuit voltage in shown in
Fig. . The variables V;. ¥,, I, and I, have
been added to expedite the discussion.

B40/07 7 +
Virms)\ —

& ® [
& The circuit used to find the Thévenin voltage.



First we note the ideal transformer imposes the
following constraints on the variables Vi, V;. I, and I,:

. 1 1
Vo =V, I, = 1.
2= 1 12

The open circuit value of 1, is zero, hence I is
zero. It follows that

V=840 /0°V, V,=210 /0° V.

From Fig. we note that V¥, is the negative
of ¥, hence

Vo, = 210 /0° V.

The circuit shown in Fig. 10.26 is used to deter-
mine the short circuit current. Viewing I, and I,
as mesh currents, the two mesh equations are

840 /0° = 80I; — 201, + Vi,

0 = 201, — 201, + V5.

¥
840/0°
WV (rms)
b

A The circuit used to calculate the short circuit
current.



When these two mesh current equations are com-
bined with the constraint equations we get

840 /0° = —40I; + Vy,

Solving for the short circuit value of I, yields
I, = —6A.
Therefore the Thévenin resistance is

—210
Ry = —¢ =350

Maximum power will be delivered to R; when
R; equals 35 ().

b) The maximum power delivered to R; is most
easily determined using the Thévenin equivalent.

From the circuit shown in Fig. we have
—210'\7
Prax = | —— ] (35) = 315 W.
50 a
W -
21000° ¢ —
V (rms) -> § 350
L
b

& The Thévenin equivalent loaded for maximum
power transfer.



