Decimation in Time algorithm (DIT)

There are two types of FFT algorithms. They are Decimation in time (DIT) and Decimation in Frequency (DIF). In DIT algorithm, we divide x(n) into 2 sub-sequences each of length N/2 by grouping the **even**-indexed samples and **odd** indexed samples together, where

$$X(k) = \sum_{Even} x[n] \quad W_N^{kn} + \sum_{Odd} x[n] \quad W_N^{kn}$$

Let n=2r for the even sum and k=2r+1 for the odd sum for r=0,1,2,....,N2/-1, we get:

$$X(k) = \sum_{r=0}^{N/2-1} x [2r] \quad W_N^{2kr} + \sum_{r=0}^{N/2-1} x [2r+1] \quad W_N^{k(2r+1)} = \sum_{r=0}^{N/2-1} g [r] \quad W_N^{2kr} + W_N^k \sum_{r=0}^{N/2-1} h [r] \quad W_N^{2kr}$$
 since $W_N^2 = W_N$ then
$$X(k) = \sum_{r=0}^{N/2-1} g [r] \quad W_{N/2}^{rk} + W_N^k \sum_{r=0}^{N/2-1} h [r] \quad W_{N/2}^{rk}$$

$$X(k) = G(k) + W_N^k H(k) \qquad k = 0, 1, 2, 3..... N/2-1$$

Where G(k) and H(k) denote the N/2 point DFTs of the sequences g(r) and h(r), respectively. Since G(k) and H(k) are periodic with period N/2, we can write last equation as:

$$X(k) = G(k) + W_N^k H(k)$$

$$X\left(k + \frac{N}{2}\right) = G(k) + W_N^{k + \frac{N}{2}} H(k) = G(k) - W_N^k H(k)$$

Since $W_N^{k+\frac{N}{2}} = -W_N^k$ summerty property

Fast Fourier Transform (FFT)

Comparison of DFT and FFFT with Reduced Number of Multiplication and Addition Operations can be given by

Number of points N	Direct computation		Radix – 2 FFT	
	Complex additions N(N – 1)	Complex Multiplication N ²	Complex additions Nlog ₂ N	Complex Multiplication (N/2)log ₂ N
4	12	16	8	4
8	56	64	24	12
16	240	256	64	32
32	992	1,024	160	80
64	4032	4,096	384	192
128	16,256	16,384	896	448

Example: Find the speed improvement factor between DFT and FFFT with Number of Multiplication Operations for N=64? **Solution:** The complex multiplications required by DFT is $N^2=64^2=4096$.

The complex multiplications required by FFT N/2 $log_2N=64/2 log_2 64== 192$.

The speed improvement factor = 4094/192= 21.33

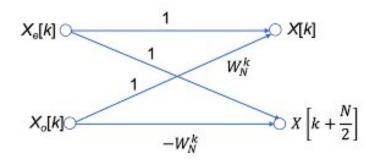
Example : Let us illustrate the ideas behind FFT algorithm by using a simple example having N = 4.

Solution:

$$G(k) = \sum_{r=0}^{N/2-1} g[r] \quad W_{N/2}^{rk} = \sum_{r=0}^{1} x[2r] \quad W_{N/2}^{rk} = x(0) \quad W_{2}^{0} + x(2) \quad W_{2}^{k}$$

$$G(0) = x(0) \quad W_{2}^{0} + x(1) \quad W_{2}^{0} = x(0) + x(2)$$

$$G(1) = x(0) \quad W_{2}^{0} + x(1) \quad W_{2}^{1} = x(0) - x(2)$$



Butterfly Diagram

 W_{4}^{1}

$$H(k) = \sum_{r=0}^{N/2-1} h[r] \quad W_{N/2}^{rk} = \sum_{r=0}^{1} x[2r+1] \quad W_{N/2}^{rk} = x(1) \quad W_{2}^{0} + x(3) \quad W_{2}^{k}$$

$$H(0) = x(1) \quad W_{2}^{0} + x(3) \quad W_{2}^{0} = x(1) + x(3)$$

$$H(1) = x(1) \quad W_{2}^{0} + x(3) \quad W_{2}^{1} = x(1) - x(3)$$

Stage 1 Stage 2
$$x(0) \longrightarrow G(0) \longrightarrow X(0)$$

$$x(2) \longrightarrow G(1) \longrightarrow X(1)$$

$$X(k) = G(k) + W_N^k H(k)$$

$$X(0) = G(0) + W_4^0 H(0)$$

$$X(1) = G(1) + W_4^1 H(1)$$

$$\begin{array}{c|c}
x(1) & H(0) \\
\hline
 & -W_4^0 \\
\hline
 & X(2) \\
\hline
 & X(3)
\end{array}$$

$$X\left(k + \frac{N}{2}\right) = G(k) - W_N^k H(k)$$

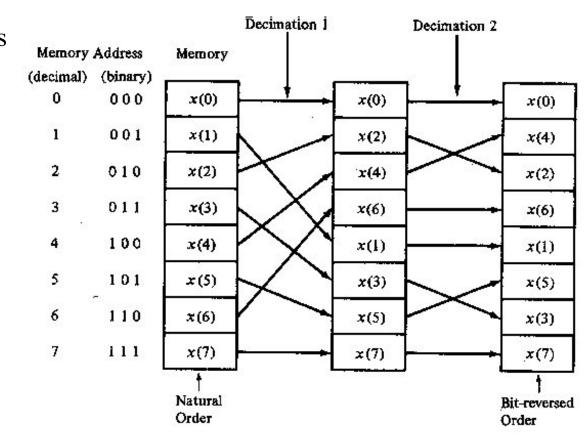
$$X(2) = G(0) - W_4^0 H(0)$$

$$X(3) = G(1) - W_4^1 H(1)$$

Note that the inputs have been shuffled so that the outputs are produced in the correct order. This can be represented as a bit-reversing process. For previous example we have 00 01 10 11 and its bit reversal will be 00 10 01 11 or 0 2 1 3. This is used each time a signal is separated into its even and odd decomposition as shown for the 8-point samples:

This decomposition is carried out by the bit reversed s

Time Point (n)	Binary Word	Reversed- Bit Word	Order
0	000	000	x[0]
1	001	100	x[4]
2	010	010	x[2]
3	011	110	x[6]
4	100	001	x[1]
5	101	101	x[5]
6	110	011	x[3]
7	111	111	x[7]

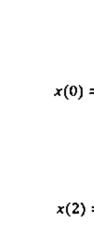


FFT example with steps

Example: Compute the DFT for sequence $x[n]=\{1, 0, 1, 0\}$? Use 4-point DIT FFT algorithm?

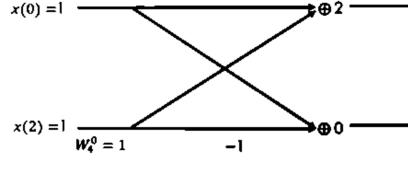
- 1. Determine the length of FFT: N=4
- 2. Calculate the Twiddle Factors. Two Twiddle factors needed for 4-point FFT $W_4^0 = 1$, and $W_4^1 = -j$
- 3. Decimate the input sequences (bit reversal process)

Input bit Index	Binary Word	Reverse Bit Word	Bit Reversed Index
0	00	00	0
1	01	10	2
2	10	01	1
3	11	11	3

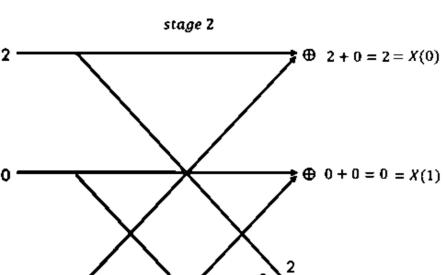


x(1) = 0

x(3) = 0

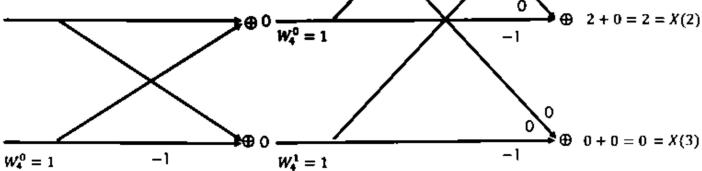


stage 1



- 4. Plotting the Signal Flow Graph for first stage
- 5. Calculate the Output of the first stage
- 6. Plotting the Signal Flow Graph for Second stage
- 7. Calculate the Output of the Second stage
- 8. Summarizing all FTTs

$$X[k]={2, 0, 2, 0}$$



Decimation-in-Frequency (DIF) Algorithm:

The DIF FFT algorithm is obtained by dividing the output sequence X(k) rather than the input sequence x(n) into several subsequences. Separate the first N/2 points and the last N/2 points of the sequence x(n) together, we get

$$X(k) = \sum_{n=0}^{N/2-1} x[n] \quad W_N^{kn} + \sum_{n=0}^{N/2-1} x\left[n + \frac{N}{2}\right] \quad W_N^{k(n + \frac{N}{2})}$$

$$X(k) = \sum_{n=0}^{N/2-1} x[n] \quad W_N^{kn} + \quad W_N^{\frac{N}{2}k} \sum_{n=0}^{N/2-1} x\left[n + \frac{N}{2}\right] \quad W_N^{kn}$$

Since
$$W_N^{\frac{N}{2}k} = \begin{cases} -1, & k:odd \\ 1, & k:even \end{cases} = (-1)^k$$
 then

$$X(k) = \sum_{n=0}^{N/2-1} x[n] \quad W_N^{kn} + (-1)^k \sum_{n=0}^{N/2-1} x[n + \frac{N}{2}] \quad W_N^{kn}$$

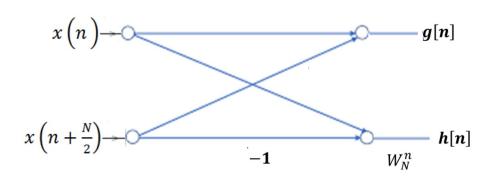
For even values of k (k = 2r) and by exploiting recursion property: $W_N^{2nr} = W_{N/2}^{nr}$, r = 0,1, ... N/2-1

$$X(2r) = \sum_{n=0}^{N/2-1} \left[x[n] + x \left[n + \frac{N}{2} \right] \right] \quad W_{\frac{N}{2}}^{nr} = \sum_{n=0}^{N/2-1} g[n] \quad W_{\frac{N}{2}}^{nr} = G(k)$$
 where $g(n) = \left[x[n] + x \left[n + \frac{N}{2} \right] \right]$

For odd values of k (k = 2r + 1) and by exploiting recursion property: $W_N^{(2r+1)n} = W_{N/2}^{nr} W_N^n$, r = 0,1, ... N/2-1

$$X(2r+1) = \sum_{n=0}^{N/2-1} \left[x [n] - x \left[n + \frac{N}{2} \right] \right] \quad W_{N/2}^{nr} W_N^n = \sum_{n=0}^{N/2-1} h[n] \quad W_{\frac{N}{2}}^{nr} = H(k) \qquad \text{where } h(n) = \left[x [n] - x \left[n + \frac{N}{2} \right] \right] W_N^n$$

g(n) and h(n) can be recognized by the butterfly.



Butterfly of Radix-2 DIF FFT algorithm

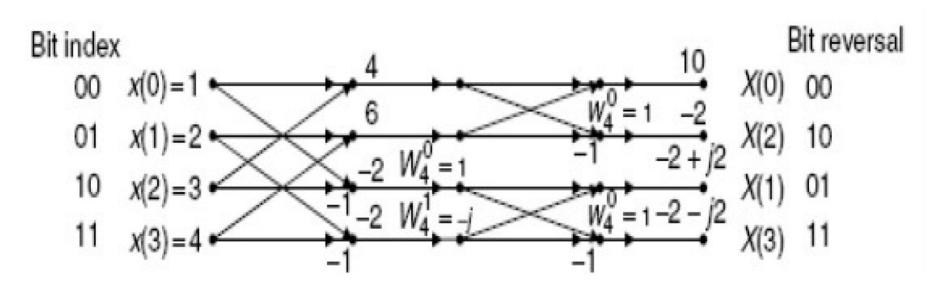
Example Given a sequence x(n) for $0 \le n \le 3$, where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4a. Evaluate its DFT X(k) using the DIF FFT method. b. Determine the number of complex multiplications.

Solution:
$$W_4^0 = e^{-j\frac{2\pi}{4} \times 0} = 1$$
, and

$$W_4^0 = e^{-j\frac{2\pi}{4}\times 0} = 1$$
, and $W_4^1 = e^{-j\frac{\pi}{2}\times 1} = cos\left(-\frac{\pi}{2}\right) + jsin\left(-\frac{\pi}{2}\right) = -j$,

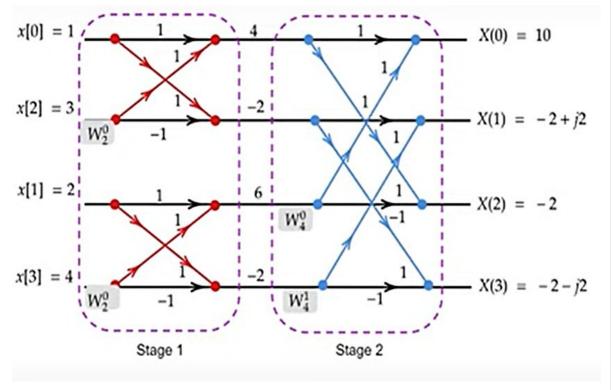
$$X(k)=\{10, -2+j2, -2, -2-j2\}$$

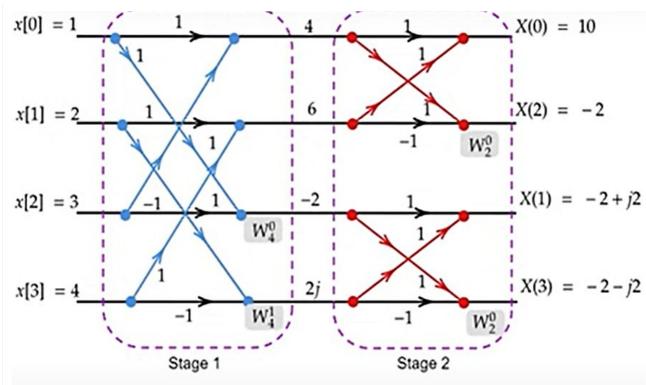
The complex multiplications is $N/2 \log_2 N = 4/2 \log_2 4 = 4$



Example: Compute the 4-point FFT of the aperiodic sequence $x[n]=\{1, 2, 3, 4\}$? Use DIT and DIF algorithms?

Solution
$$W_4^0 = e^{-j\frac{2\pi}{4}\times 0} = 1$$
, and $W_4^1 = e^{-j\frac{\pi}{2}\times 1} = cos\left(-\frac{\pi}{2}\right) + jsin\left(-\frac{\pi}{2}\right) = -j$



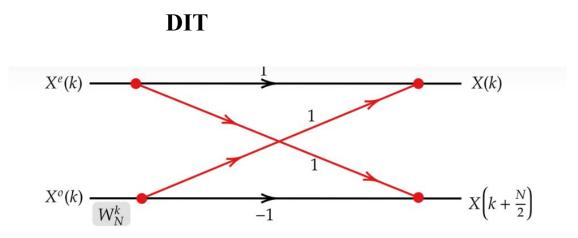


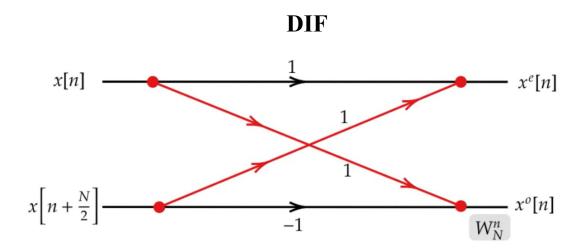
Difference between DIT and DIF:

- In DIT, the input is bit—reversed while the output is in natural order. For DIF, the input is normal order, while output is bit—reversed.
- Considering the butterfly diagram, in DIF, the complex multiplication takes place after the add–subtract operation.

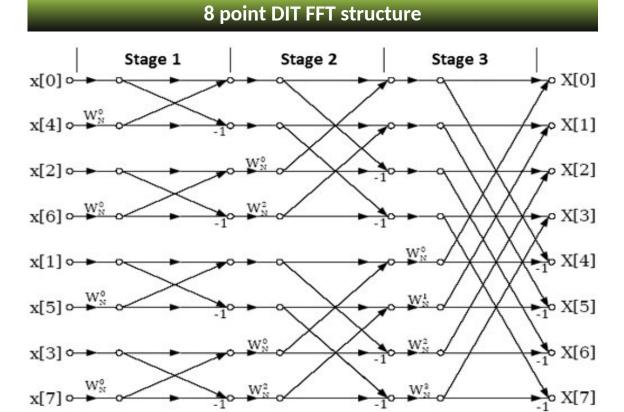
Similarities:

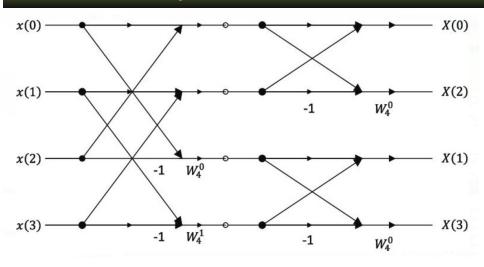
- > Both algorithm requires same number of operations to compute DFT.
- > Both algorithms require bit—reversed at same place during computation.



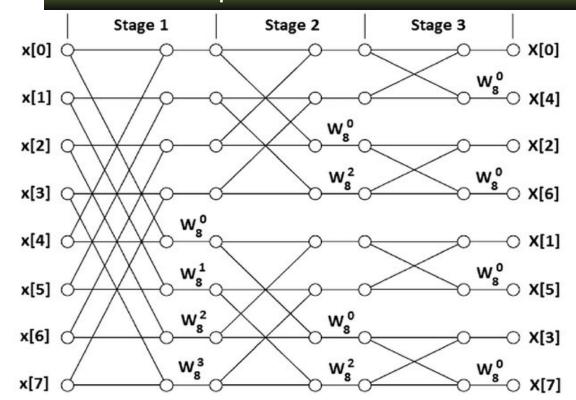


x(0) x(2) x(1) w_4^0 x(3) w_4^0 x(3) w_4^0 x(3) x(3) x(3) x(4) x(4) x(5) x(5) x(6) x(1) x(1) x(1) x(2) x(3)





8 point DIF FFT structure



FFT- Example - N=8

Example Compute the 8 point DFT of the sequence x(n) = [1, -1, 2, 0, 1, 3, 1, -1] using

- 1-Direct computation DFT
- 2- Linear Transformation
- 3- FFT- DIT algorithm

Solution:

(1) Direct computation DFT

$$X(k) = \sum_{n=0}^{N-1} x[n] \quad W_N^{kn}$$

$$k = 0, 1, 2, 3, \dots, N-1$$

$$W_N = e^{-j\frac{2\pi}{N}}$$

of the sequence
$$\mathbf{x}(\mathbf{n}) = [1, -1, 2, 0, 1, 3, 1, -1]$$
 using

$$\mathbf{x}(0) = \sum_{n=0}^{7} x(n)W_0^0 = \mathbf{x}(0)W_0^0 + \mathbf{x}(1)W_0^0 + \mathbf{x}(2)W_0^0 + \mathbf{x}(3)W_0^0 + \mathbf{x}(4)W_0^0 + \mathbf{x}(5)W_0^0 + \mathbf{x}(6)W_0^0 + \mathbf{x}(7)W_0^0 = 1 - 1 + 2 + 0 + 1 + 3 + 1 - 1 = 6$$

$$\mathbf{x}(1) = \sum_{n=0}^{7} x(n)W_0^1 = \mathbf{x}(0)W_0^0 + \mathbf{x}(1)W_0^1 + \mathbf{x}(2)W_0^2 + \mathbf{x}(3)W_0^3 + \mathbf{x}(4)W_0^4 + \mathbf{x}(5)W_0^6 + \mathbf{x}(6)W_0^6 + \mathbf{x}(7)W_0^7$$

$$\mathbf{x}(1) = \mathbf{1}(1) - \mathbf{1} \left[\frac{1}{\sqrt{2}} (1-f) \right] - 2f + 0 \left[\frac{1}{\sqrt{2}} (-1-f) \right] - 1 + 3 \left[\frac{1}{\sqrt{2}} (-1+f) \right] + 1f - 1 \left[\frac{1}{\sqrt{2}} (1+f) \right] = -\frac{5}{\sqrt{2}} + \left(\frac{3}{\sqrt{2}} - 1 \right)f$$

$$\mathbf{x}(2) = \sum_{n=0}^{7} x(n)W_0^3 = \mathbf{x}(0)W_0^6 + \mathbf{x}(1)W_0^3 + \mathbf{x}(2)W_0^4 + \mathbf{x}(3)W_0^4 + \mathbf{x}(4)W_0^8 + \mathbf{x}(5)W_0^4 + \mathbf{x}(5)W_0^{10} + \mathbf{x}(6)W_0^{12} + \mathbf{x}(7)W_0^{14}$$

$$\mathbf{x}(2) = \sum_{n=0}^{7} x(n)W_0^3 = \mathbf{x}(0)W_0^8 + \mathbf{x}(1)W_0^3 + \mathbf{x}(2)W_0^4 + \mathbf{x}(3)W_0^4 + \mathbf{x}(3)W_0^6 + \mathbf{x}(4)W_0^8 + \mathbf{x}(5)W_0^3 + \mathbf{x}(5)W_0^4 + \mathbf{x}(5)W_0^4 + \mathbf{x}(5)W_0^4 + \mathbf{x}(5)W_0^4 + \mathbf{x}(7)W_0^6 = 1 - 1(-f) + 2(-1) + 0(f) + 1 + 3(-f) + 1(-1) - 1(f)$$

$$\mathbf{x}(2) = \sum_{n=0}^{7} x(n)W_0^3 = \mathbf{x}(0)W_0^3 + \mathbf{x}(1)W_0^3 + \mathbf{x}(2)W_0^4 + \mathbf{x}(3)W_0^4 + \mathbf{x}(5)W_0^3 + \mathbf{x}(4)W_0^3 + \mathbf{x}(5)W_0^3 + \mathbf{x}(6)W_0^3 + \mathbf{x}(7)W_0^4 = 1 - 1(-f) + 2(-1) + 0(f) + 1 + 3(-f) + 1(-1) - 1(f)$$

$$\mathbf{x}(3) = \sum_{n=0}^{7} x(n)W_0^3 = \mathbf{x}(0)W_0^3 + \mathbf{x}(1)W_0^3 + \mathbf{x}(2)W_0^4 + \mathbf{x}(3)W_0^4 + \mathbf{x}(5)W_0^3 + \mathbf{x}(6)W_0^2 + \mathbf{x}(7)W_0^4 = 1 - 1(-f) + 2(-f) + + 2(-f)$$

Example Compute the DFT of the sequence x(n) = [1, -1, 2, 0, 1, 3, 1, -1] using

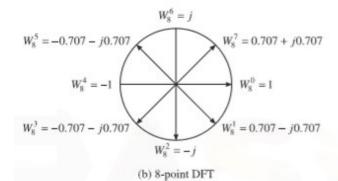
Solution:

(2) Linear Transformation

$$X(k) = \sum_{n=0}^{N-1} x[n] \quad W_N^{kn}$$

$$k = 0, 1, 2, 3.....N-1$$

$$W_N = e^{-j\frac{2\pi}{N}}$$



$$W_{8}^{0}=1$$

$$W_{8}^{1}=\frac{1}{\sqrt{2}}-j\frac{1}{\sqrt{2}}$$

$$W_{8}^{5}=-\frac{1}{\sqrt{2}}+j\frac{1}{\sqrt{2}}$$

$$W_{8}^{6}=-j$$

$$W_{8}^{6}=j$$

$$W_{8}^{7}=\frac{1}{\sqrt{2}}+j\frac{1}{\sqrt{2}}$$

$$W_{8}^{7}=\frac{1}{\sqrt{2}}+j\frac{1}{\sqrt{2}}$$

$$\mathbf{W}_{8} = \begin{bmatrix} \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{0} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{1}^{1} & \mathbf{W}_{2}^{2} & \mathbf{W}_{3}^{2} & \mathbf{W}_{8}^{3} & \mathbf{W}_{8}^{4} & \mathbf{W}_{8}^{5} & \mathbf{W}_{8}^{6} & \mathbf{W}_{8}^{7} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{2} & \mathbf{W}_{8}^{4} & \mathbf{W}_{8}^{6} & \mathbf{W}_{8}^{8} & \mathbf{W}_{8}^{10} & \mathbf{W}_{1}^{12} & \mathbf{W}_{1}^{14} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{3} & \mathbf{W}_{8}^{4} & \mathbf{W}_{8}^{8} & \mathbf{W}_{8}^{12} & \mathbf{W}_{1}^{15} & \mathbf{W}_{1}^{18} & \mathbf{W}_{2}^{21} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{4} & \mathbf{W}_{8}^{8} & \mathbf{W}_{8}^{12} & \mathbf{W}_{1}^{16} & \mathbf{W}_{8}^{20} & \mathbf{W}_{8}^{24} & \mathbf{W}_{8}^{28} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{5} & \mathbf{W}_{8}^{10} & \mathbf{W}_{1}^{12} & \mathbf{W}_{1}^{16} & \mathbf{W}_{8}^{20} & \mathbf{W}_{8}^{24} & \mathbf{W}_{8}^{28} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{5} & \mathbf{W}_{8}^{10} & \mathbf{W}_{1}^{12} & \mathbf{W}_{1}^{16} & \mathbf{W}_{8}^{20} & \mathbf{W}_{8}^{24} & \mathbf{W}_{8}^{28} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{5} & \mathbf{W}_{8}^{10} & \mathbf{W}_{1}^{12} & \mathbf{W}_{1}^{18} & \mathbf{W}_{2}^{21} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{6} & \mathbf{W}_{8}^{12} & \mathbf{W}_{1}^{18} & \mathbf{W}_{8}^{21} & \mathbf{W}_{8}^{25} & \mathbf{W}_{8}^{30} & \mathbf{W}_{8}^{35} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{12} & \mathbf{W}_{8}^{14} & \mathbf{W}_{8}^{10} & \mathbf{W}_{8}^{21} & \mathbf{W}_{8}^{21} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{0} & \mathbf{W}_{8}^{12} & \mathbf{W}_{8}^{14} & \mathbf{W}_{8}^{10} & \mathbf{W}_{8}^{21} & \mathbf{W}_{8}^{21} \\ \mathbf{W}_{8}^{0} & \mathbf{W}_{8$$

$$X(K) = \mathbf{W}_8 \times x(n)^T$$

$$X(K) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \frac{1}{\sqrt{2}}(1-j) & -j & \frac{1}{\sqrt{2}}(-1-j) & -1 & \frac{1}{\sqrt{2}}(-1+j) & j & \frac{1}{\sqrt{2}}(1+j) \\ 1 & -j & -1 & j & 1 & -j & -1 & j \\ 1 & \frac{1}{\sqrt{2}}(-1+j) & j & \frac{1}{\sqrt{2}}(1-j) & -1 & \frac{1}{\sqrt{2}}(1+j) & -j & \frac{1}{\sqrt{2}}(-1+j) \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & \frac{1}{\sqrt{2}}(-1+j) & -j & \frac{1}{\sqrt{2}}(1+j) & -1 & \frac{1}{\sqrt{2}}(1-j) & j & \frac{1}{\sqrt{2}}(-1-j) \\ 1 & j & -1 & -j & 1 & j & -1 & -j \\ 1 & \frac{1}{\sqrt{2}}(1+j) & j & \frac{1}{\sqrt{2}}(-1+j) & -1 & \frac{1}{\sqrt{2}}(-1-j) & -j & \frac{1}{\sqrt{2}}(1-j) \end{bmatrix} \times \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 1 \\ 3 \\ 1 \\ -1 \end{bmatrix}$$

$$X(K) = \left[6, -\frac{5}{\sqrt{2}} + \left(\frac{3}{\sqrt{2}} - 1\right)j, -1 - 3j, \frac{5}{\sqrt{2}} + \left(\frac{3}{\sqrt{2}} - 1\right)j, 4, \frac{5}{\sqrt{2}} - \left(\frac{3}{\sqrt{2}} - 1\right)j, -1 + 3j, -\frac{5}{\sqrt{2}} - \left(\frac{3}{\sqrt{2}} - 1\right)j\right]$$

Example Compute the DFT of the sequence x(n) = [1, -1, 2, 0, 1, 3, 1, -1] using

Solution:

(3) FFT- DIT algorithm

$$X(k) = \sum_{n=0}^{N-1} x[n] \quad W_N^{kn}$$

$$k = 0, 1, 2, 3..... N-1$$

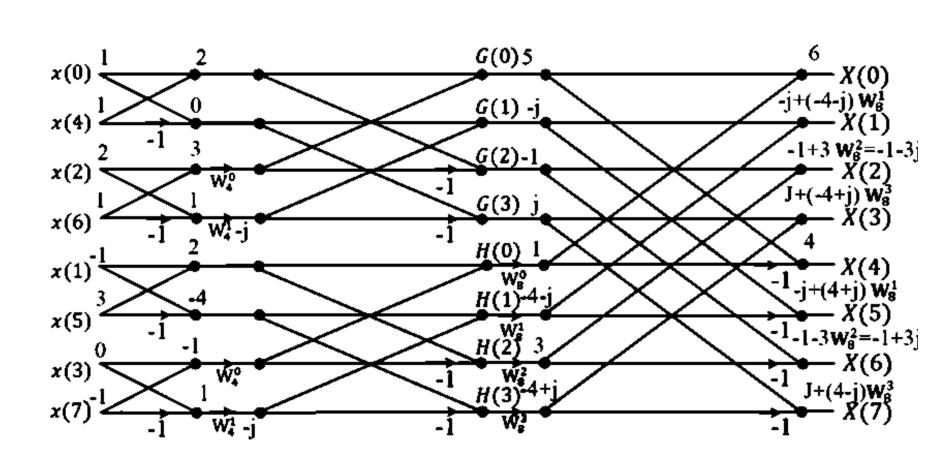
$$W_N = e^{-j\frac{2\pi}{N}}$$

$$W_8^0 = 1$$

$$W_8^1 = \frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$$

$$W_8^2 = -j$$

$$W_8^3 = -\frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$$



$$X(K) = \left[6, -\frac{5}{\sqrt{2}} + \left(\frac{3}{\sqrt{2}} - 1\right)j, -1 - 3j, \frac{5}{\sqrt{2}} + \left(\frac{3}{\sqrt{2}} - 1\right)j, 4, \frac{5}{\sqrt{2}} - \left(\frac{3}{\sqrt{2}} - 1\right)j, -1 + 3j, -\frac{5}{\sqrt{2}} - \left(\frac{3}{\sqrt{2}} - 1\right)j\right]$$

Digital Filter Design

- A filter is essentially a system or network that selectively changes the wave shape, amplitude and or phase-frequency characteristics of a signal in a desired manner.
- Common filtering objectives are to improve the quality of a signal (to remove or reduce noise), to extract information from signals or to separate two or more signals previously combined to make, for example, efficient use of available communication channel.
- A digital filter is a mathematical algorithm implemented in hardware and /or software that operate on a digital input signal to produce a digital output signal of achieving a filter objective. A simplified block diagram of a real time digital filter with analogue input and output signals is shown in Figure below. So digital filter is a system that perform the mathematical operation in signal processing on a sampled signal to reduce or enhance certain aspects of that signal

