S

fm Sidh LEL‘LL;'
- A

5 AND LOGIC FAMILIES

ELECTRICAL DEPARTMENT
FOURTH STAGE

INSTRUCTOR: DR. ANAS MQDAD

LECTURE TWO

PROGRAMMABLE LOGIC
OUTLINES

“* LUT CPLD Architecture
* PLA (Programmable Logic Array)

+» Macrocell Modes

*» Field-Programmable Gate Arrays (FPGAS)

** Logic Modules

¢ Operating Modes of a Logic Module

LUT CPLD Architecture

U This architecture differs from the classic CPLD previously
discussed. As shown by the block diagram in Figure 1, this
device contains logic array blocks (LABs) each with
multiple logic elements (LEs). An LE is the basic logic
design unit and is analogous to the macrocell.

O The programmable interconnects are arranged in a row and
column arrangement running between the LABs, and

input/output elements (IOEs) are oriented around the perimeter.

U A main difference between this type of CPLD and the classic
AND/OR array CPLD previously discussed 1s the way in
which a logic function is developed. Look-up tables (LUTs)
are used instead of AND/OR arrays.

I0E

10E

10E

IOE

LAB

LAB

Logic element

Logic element

LAB

Logic element

Logic element

Logic element

Logic element

Logic element

Logic element

Logic element

IOE

LAB

LAB

Logic element

Logic element

LAB

Logic element

Logic element

Logic element

Logic element

Logic element

Logic element

Logic element

Figure 1 Simplified block diagram of an LUT CPLD.

O An LUT is basically a type of memory that can be programmed to produce SOP functions (discussed in
more detail in next sections). These two approaches are contrasted in Figure 2.

Ag Ay Ay Ay LABs

> Dooood 0o

4 —] i . . 0Oooooo 00
T . o 501

! output : output O00O00O00 O O
R ,‘ 0DOoooo0 0O
e ! I OO

(a) Row/column interconnects (b) Channel-type interconnect

{a) Look-up table logic. A 1 15 stored at (k) ANDYOR array logic

each product t addreszs. .
ACH product ferm acdress FIGURE 3 LUT CPLDs have row/column interconnects.

Classic CPLDs have channel-type interconnects.
FIGURE 2 Two types of logic function generation in CPLDs.

U As mentioned, the LUT CPLD has a row/column arrangement of interconnects instead of the channel-type
interconnects found in most classic CPLDs. These two approaches are contrasted in Figure 3

L Most CPLDs use a nonvolatile process technology for the programmable links. The LUT CPLD, however, uses a SRAM-
based process technology that is volatile—all programmed logic is lost when power 1s turned off. The memory embedded
on the chip stores the program data using nonvolatile memory technology and reconfigures the CPLD on power up.

PLA (Programmable Logic Array)

= As you have learned, the architecture of a CPLD 1is the way in which the e,
internal elements are organized and arranged. —% & -
= The architecture of some PLDs is based on a PLA (programmable logic I A
array) structure rather than on a PAL (programmable array logic) structure,

which we have discussed. i E

= Figure 4 compares a simple PAL structure with a simple PLA structure. The (a) PAL-type amay
PAL has a programmable AND array followed by a fixed OR array and
produces an SOP expression, as shown by the example in Figure 4(a). D
= The PLA has a programmable AND array followed by a programmable OR & 4 %
array, as shown by the example in Figure 4(b). 1 D -
7 :::} G
\ A B F 111

}.:_
1
tz AR+ AR

AR+ AR
AR+ AR
AR+ AR

(b PLA-type array

FIGURE 4 Comparison of a basic PLA to a basic PAL type PLD architecture.

Macrocell Modes

» CPLD macrocells were introduced previously. A macrocell can be configured for combinational logic or registered
logic outputs and inputs by programming. The term registered refers to the use of flip-flops. In this section, you will
learn about the typical macrocell, including the combinational and the registered modes of operation. Although
macrocell architecture varies among different CPLDs, a typical macrocell architecture is used for illustration.

» Logic diagrams often use the symbol shown in Figure 5 to represent a multiplexer. In this case, the multiplexer
has two data inputs and a select input that provides for programmable selection; the select input is usually not

shown on a logic diagram.

» Figure 6 shows a complete macrocell including the flip-flop (register). The
XOR gate provides for complementing the SOP function from the OR gate to

produce a function in POS form.

OR Truth Table
A B|Y
0 ofo
0 1|1
1 0] 1
1 1|1

XOR Truth Table

A BlY
0 0|0
0 1 1
1 0 1
1 1|0

-
Dy —

Data inputs < Data cutput

D,

FIGURE 5 Commonly used symbol for a
multiplexer. It can have any number of inputs.

A 1 on the top input of the XOR gate
complements the OR output, and a 0 lets the
OR output pass uncomplemented (in SOP
form).

MUX 1 provides for selection of either the
XOR output or an input from the I/O. MUX 2

can be programmed to select either the global

clock or a clock signal based on a product term.

MUX 3 can be programmed to select
either a HIGH (VCC) or a product-term
enable for the flip-flop.

Parallel expanders

T

36 lines
from PIA

JUIOY -

Clohal Global
clear clock

From

MUXS5 IO

JA

15 expander product
terms from other
macrocells

J_D— To [0

from other
macrocells
DC |
: —™~ MUX | Dr-;'_“E
Product- : > i J
lerm l — — >
selection I
matrix | | Muxz) EN
I L CLR
S L~
Voor—1~
Shared
expander Mo,
> MUX 4

FIGURE 6 A CPLD macrocell.

MUX 4 can select the global clear or a product-term clear. MUX 5 is used to bypass the flip-flop and connect the combinational logic
output to the I/O or to connect the registered output to the I/O.
The flip-flop can be programmed as a D, T (toggle), or J-K flip-flop.

The Combinational Mode

» When a macrocell is programmed to produce an SOP combinational logic function, the logic elements in the data path are
as shown in red in Figure 7. As you can see, only one mux is used and the register (flip-flop) is bypassed.

Global Global
| Parallel expanders clear clock
I from other
I macrocells
From
ll>,C MUXS LO
]
D_ o 5 To /O
s D_ P~ mMux1 | PRE
D¢
Product- | | L o
Bah > c
selection | ! —
D_ | | MUX 2 EN
Ex” CLR
B <
|
DC Vee—] A MUX3
- Shared
O<I| expander
*
36 lines |5 expander product
from PIA terms from other
macrocells

FIGURE 7 A macrocell configured for generation of an SOP logic function. Red indicates data path

The Reqgistered Mode

When a macrocell is programmed for the registered mode with the SOP combinational logic output providing the data input
to the register and clocked by the global clock, the elements in the data path are as shown in red in Figure 8. As you can see,
four multiplexers (mux) are used and the register (flip-flop) is active.

Global Global
Parallel expanders clear clock
from other
macrocells

From

I
|
I
DC MUXS 1O
|
7 D_ 0 & To 1O
£ . ‘ —> vux 1 || PRE
4 . DT Q
Product- I >
A) jem || > C
selection : n]—“‘--.
_ D_ matix | | MUX 2 e
[CLR
O 34
I .
Vip = A MUX 3
— Shared
O-Q expander —
-]
- MUX 4
36 lines |5 expander product
from PIA terms from other

macrocells

FIGURE 8 A macrocell configured for generation of a registered logic function.
Red indicates data path.

Field-Programmable Gate Arrays (FPGAS)

¢ As you have learned, the classic CPLD architecture consists of PAL/GAL or PLA-type logic blocks with
programmable interconnections.

¢ Basically, the FPGA (field-programmable gate array) differs in architecture, does not use PAL/PLA type arrays, and
has much greater densities than CPLDs. A typical FPGA has many times more equivalent gates than a typical CPLD.

% The logic-producing elements in FPGAs are generally much smaller than in CPLDs, and there are many more of

them. Also, the programmable interconnections are generally organized in a row and column arrangement in FPGAs.

¢ The three basic elements in an FPGA are the configurable logic block (CLB), the interconnections, and the input/output
(I/O) blocks, as illustrated in Figure 9.

¢ The configurable logic blocks (CLBs) in an FPGA are not as complex as the LABs or function block (FBs) in a CPLD,
but generally there are many more of them. When the CLBs are relatively simple, the FPGA architecture is called fine
grained.

% When the CLBs are larger and more complex, the architecture is called coarse grained. The I/O blocks around the
perimeter of the structure provide individually selectable input, output, or bidirectional access to the outside world.

Programmable

EE 53 EP interconnections %]

10 I L0 — I
block block block
110 d 10 FS
block block
CLB CLB CLB { ————- CLB
110 110 £
block block]
CLB CLB CcLB | —-————- CLB
I [P0 FS
block | | | | block
I I I I
: : | | : |
| | | | I I
| |
I |
I CLB CLB cLB |+ _____ CLB I
I [P0 g3
block block]
FPGA 10] o |\ [0
block block block block

T J

FIGURE 9 Basic structure of an FPGA. CLB is configurable logic block, also known
as logic array block (LAB).

¢ The distributed matrix of programmable interconnections provide for interconnection of the CLBs and connection to
inputs and outputs. Large FPGAs can have tens of thousands of CLBs in addition to memory and other resources.

¢ Most programmable logic manufacturers make a series of FPGAs that range in density, power consumption, supply
voltage, speed, and to some degree vary in architecture. FPGAs are reprogrammable and use SRAM or antifuse process
technology for the programmable links.

¢ Densities can range from hundreds of logic modules to hundreds of thousands of logic modules in packages with up to
over 1,000 pins. DC supply voltages are typically 1.8 V to 5 V, depending on the specific device.

Configurable Loqgic Blocks

¢ Typically, an FPGA logic block consists of several smaller logic modules that are the basic building units,
somewhat analogous to macrocells in a CPLD.

¢ Figure 10 shows the fundamental configurable logic blocks (CLBs) within the global row/column programmable
interconnects that are used to connect logic blocks.

s Each CLB (also known as logic array block, LAB) is made up of multiple smaller logic modules and a local
programmable interconnect that is used to connect logic modules within the CLB.

Logic Modules

O A logic module in an FPGA logic block can be configured for

combinational logic, registered logic, or a combination of both.

A flip-flop 1s part of the associated logic and is used for
registered logic.

A block diagram of a typical LUT-based logic module is
shown in Figure 11. As you know, an LUT (look-up table) is a
type of memory that is programmable and used to generate
SOP combinational logic functions. The LUT essentially does
the same job as the PAL or PLA does.

SOP output

An LUT y | Associated 0

| logic

Logic module

FIGURE 11 Basic block diagram of a logic module in an FPGA.

g

—>
—— Logic module
——

CLB

d

Logic module

CLB

e Logic module

K——— Logic module

<= Logic module ——— Logic module
Local I Local I
interconnect | interconnect |
| |
| |

1 Logic module K1 Logic module

g §

™

Global column (Global row
Interconnect terconmnect

FIGURE 10 Basic configurable logic blocks (CLBs) within the
global row/column programmable interconnects.

O Generally, the organization of an LUT consists of a number of memory cells equal to 2™, where 7 is the number of input
variables. For example, three inputs can select up to eight memory cells, so an LUT with three input variables can produce

an SOP expression with up to eight product terms.

O A pattern of 1s and Os can be programmed into the LUT memory cells, as illustrated in Figure 12 for a specified SOP
function. Each 1 means the associated product term appears in the SOP output, and each 0 means that the associated

product term does not appear in the SOP output. The resulting SOP output expression

ApF |E|:| + Eg;q.]fl.;] LE AEE[;‘L} + A;.ﬂ‘h;‘iu

Selection

1S

logic

Memory

A

A

g — = A

h o Ar

Ayl

2A 1Ay

2414y

cells

0

'

LUT

S0P output

FIGURE 12 The basic concept of an LUT programmed for a particular SOP output.

EXAMPLE

Show a basic 3-variable LUT programmed to produce the following SOP function:

.*13;41.-"-1_.:] + .*EELE[:. + Eg.-:l A + .-"-131|J"!|.|:| + IQEJ.:!.:]

) Selection logic Memory
Solution cells
AxA1Aq 0
A 1 1s stored for each product term in the SOP A7, 4g 1 'Y
expression, as shown in Figure 13. AT 1
240
Ay — Hﬂ;ﬂ |.‘1.|:| |
A —— % SOP output
.1.: —_— ."‘!lﬂ;.q|ﬁ|:| |_
."‘!I?E'A.u | i
."'!lﬂ;.4.|ﬁ|:| | L
Ay Ag 0

Figure 13

Typically, a logic module (LM) can be programmed for the
following modes of operation:

* Normal mode

* Extended LUT mode

* Arithmetic mode

* Shared arithmetic mode

In addition to these four modes, a logic module can be utilized as a register chain to create counters and shift registers. In
this section, we will discuss the normal mode and the extended LUT mode.

The normal mode 1s used primarily for generating combinational logic functions. A logic module can implement one or
two combinational output functions with its two LUTs. Examples of four LUT configurations are illustrated in Figure 14.
Generally, two SOP functions, each with four variables or less, can be implemented in an LM without sharing inputs. For
example, you can have two 4-variable functions, one 4-variable function and one 3-variable function, or two 3-variable
functions. By sharing inputs, you can have any combination of a total of eight inputs up to a maximum of six inputs for
each LUT. In the normal mode, you are limited to 6-variable SOP functions.

* The extended LUT mode allows expansion to a 7-variable function, — -

. . . . —| dinput = b-input
as illustrated in Figure 15. The multiplexer formed by the AND-OR — | wr [4 Lt -
circuit with a complemented input is part of the dedicated logic in a -
logic module. _

—= d-input —=| Z-input
— LUT = LUT
;

LM — -
—_—— S-in_put _ | S-input
. : ST LUT LuT

?.ir.p..u_". ¢ SOV i

variables [SOP autput —| dinput N .| 3-input
. AD()f —= LUT i LUT

o S-input - -

- LUT

FIGURE 14 Examples of possible LUT configurations

FIGURE 15 Expansion of a logic module (LM) to produce a 7- in a logic module (LM) in the normal mode.

variable SOP function in the extended LUT mode.

EXAMPLE

A logic module 1s configured in the extended LUT mode, as shown in Figure 16. For the specific LUT outputs
shown, determine the final SOP output.

Solution
The SOP output expression is as follows:

Eﬁ..ﬁlyﬂi}ﬂ}i‘ipﬂn + fiﬁ,ﬁﬁ_?,ﬂ:;‘hﬂn 1 ‘__1-;:14;';1}__1}4'&:] 1 Aﬁfiﬁ,-‘iﬁ_;ﬁ}’ﬂhj + Aﬁ.ﬁll_ij.:;q;;l_‘_ljn + .ﬁllr,.-'-*i_i:q..:."ll}-'ﬂi_jﬁn

T: .-'1|_|.'1._':.'1. :.'JI | + ’IjT_lt 11|]1| | T .'1._:.-1._- .'1. ';JI :.'JI 1

Ao LM
A ————————f
1) g
As S-input &
o e o wr ||
A T_:
; S-input [:

o LUT
Adg————*

’I,::,tt_l"u"ﬁ] + .'1.4._."Ij.ﬁ_|_."l _1.-'1|1 + .-'1|::,.-'1|_<.'1._|.-1.3."I:

Figure 16

Thank You

	Slide 1: Digital Devices and Logic Families
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

