
DIGITAL DEVICES AND LOGIC FAMILIES

FOURTH STAGE

INSTRUCTOR: DR. ANAS MQDAD

ELECTRICAL DEPARTMENT

1

LECTURE THREE

PROGRAMMABLE LOGIC
OUTLINES

2

➢ SRAM-Based FPGAs

➢ FPGA Cores

➢ Embedded Functions

➢ Specific FPGA Devices

➢ Programmable Logic Software

3

SRAM-Based FPGAs

▪ FPGAs are either nonvolatile because they are based on

antifuse technology or they are volatile because they are

based on SRAM technology. (The term volatile means that

all the data programmed into the configurable logic blocks

are lost when power is turned off.)

▪ Therefore, SRAM-based FPGAs include either a

nonvolatile configuration memory embedded on the chip to

store the program data and reconfigure the device each

time power is turned back on or they use an external

memory with data transfer controlled by a host processor.

▪ The concept of on-the-chip memory is illustrated in Figure

1 (a). The concept of the host processor configuration is

shown in part (b).

FIGURE 1 Basic concepts of volatile FPGA configurations.

4

FPGA Cores

▪ FPGAs, as we have discussed, are essentially like “blank slates” that the end user can program for any logic design.

FPGAs are available that also contain hard-core logic.

▪ A hard core is a portion of logic in an FPGA that is put in by the manufacturer to provide a specific function and that

cannot be reprogrammed. For example, if a customer needs a small microprocessor as part of a system design, it can be

programmed into the FPGA by the customer or it can be provided as hard core by the manufacturer.

▪ If the embedded function has some programmable features, it is known as a soft-core function. An advantage of the

hard-core approach is that the same design can be implemented using much less of the available capacity of the FPGA

than if the user programmed it in the field, resulting in less space on the chip (“real estate”) and less development time

for the user.

▪ Also, hard-core functions have been thoroughly tested. The disadvantage of the hard core is that the specifications are

fixed during manufacturing and the customer must be able to use the hard-core logic “as is.” It cannot be changed later

▪ Hard cores are generally available for functions that are commonly used in digital systems, such as a microprocessor,

standard input/output interfaces, and digital signal processors.

▪ More than one hard-core function can be programmed in an FPGA. Figure 2 illustrates the concept of a hard core

surrounded by configurable logic programmed by the user. This is a basic embedded system because the hard-core

function is embedded in the user-programmed logic.

5

FIGURE 2 Basic idea of a hard-core function embedded in an FPGA.

▪ Hard core designs are generally developed by and are

the property of the FPGA manufacturer. Designs

owned by the manufacturer are termed intellectual

property (IP).

▪ A company usually lists the types of intellectual

property that are available on its website. Some

intellectual properties are a mix of hard core and soft

core.

▪ A processor that has some flexibility in the selection

and adjustment of certain parameters by the user is an

example.

▪ Those FPGAs containing either or both hard-core

and soft-core embedded processors and other

functions are known as platform FPGAs because

they can be used to implement an entire system

without the need for external support devices.

6

Embedded Functions

▪ A block diagram of a typical FPGA is shown in

Figure 3. The FPGA contains embedded memory

functions as well as digital signal processing (DSP)

functions.

▪ DSP functions, such as digital filters, are

commonly used in many systems. As you can see

in the block diagram, the embedded blocks are

arranged throughout the FPGA interconnection

matrix and input/output elements (IOEs) are placed

around the FPGA perimeter.

Figure 3

7

Specific FPGA Devices

▪ Several manufacturers produce FPGAs as well as CPLDs. Table 1 lists device families from selected companies. Check

the website for the most current information.

Table 1
▪ FPGAs vary greatly in terms of complexity. Table 2 lists

some of the parameter ranges that are available. Keep in

mind that these numbers are subject to change as technology

advances.

Table 2

8

Programmable Logic Software

▪ In order to be useful, programmable logic must have both

hardware and software components combined into a functional

unit. All manufacturers of SPLDs, CPLDs, and FPGAs provide

software support for each hardware device. These software

packages are in a category of software known as computer-aided

design (CAD).

▪ The programming process is generally referred to as design flow. A

basic design flow diagram for implementing a logic design in a

programmable device is shown in Figure 4. Most specific software

packages incorporate these elements in one form or another and

process them automatically. The device being programmed is

usually referred to as the target device.
FIGURE 4 General design flow diagram for

programming a SPLD, CPLD, or FPGA.

9

▪ You must have four things to get started programming a device: a computer, development software, a programmable

logic device (SPLD, CPLD, or FPGA), and a way to connect the device to the computer. These essentials are

illustrated in Figure 5.

▪ Part (a) shows a computer that meets the system requirements for the particular software you are using.

▪ Part (b) shows the software acquired either on a CD from the device manufacturer or downloaded from the device

manufacturer’s website. Most manufacturers provide free software that can be downloaded and used for a limited

time (Examples are Altera Quartus II and Xilinx ISE.).

▪ Part (c) shows a programmable logic device.

▪ Part (d) illustrates two means of physically connecting the device to the computer via cable by using either the

programming fixture into which the device is inserted or the development board on which the device is mounted

▪ After the software has been installed on your computer, you must become familiar with the particular software

tools before attempting to connect and program a device.

10
Figure 5

11

Design Entry

Assume that you have a logic circuit design that you wish to implement in a programmable device. You can

enter the design on your computer in either of two basic ways: schematic entry or text entry. In order to use

text entry, you must be familiar with an HDL such as VHDL, Verilog, or AHDL. Most programmable logic

manufacturers provide software packages that support VHDL and Verilog because they are standard HDLs.

Some also support AHDL, ABEL, or other proprietary HDLs. Schematic entry allows you to place symbols of

logic gates and other logic functions from a library on the screen and connect them as required by your design.

A knowledge of an HDL is not required for schematic entry.

Functional Simulation

The purpose of the functional simulation in the design flow is to make sure that the design you entered works as it

should in terms of its logic operation, before synthesizing into a hardware design. Basically, after a logic circuit is

compiled, it can then be simulated by applying input waveforms and checking the output for all possible input

combinations. Functional simulation is accomplished graphically using a waveform editor or programmatically using

a test bench. Graphical waveform editors allow drawing of test stimulus using waveform drawing features and drag

and drop techniques.

12

Synthesis

Once the design has been entered and functionally simulated to verify that its logical operation is correct, the compiler

automatically goes through several phases to prepare the design to be downloaded to the target device. During this

synthesis phase of the design flow, the design is optimized in terms of minimizing the number of gates, replacing logic

elements with other logic elements that can perform the same function more efficiently, and eliminating any redundant

logic. The final output from the synthesis phase is a netlist that describes the optimized version of the logic circuit.

Implementation (Software)

After the design has been synthesized, the compiler implements the design, which is basically a “mapping” of the design so

that it will fit in the specific target device based on its architecture and pin configurations. This process is called fitting or

place and routing. To accomplish the implementation phase of the design flow, the software must “know” about the specific

device and have detailed pin information. Complete data on all potential target devices are generally stored in the software

library.

13

Timing Simulation

▪ This part of the design flow occurs after the implementation and before downloading to the target

device. The timing simulation verifies that the circuit works at the design frequency and that there are

no timing problems that will affect the overall operation. Since a functional simulation has already been

done, the circuit should work properly from a logic point of view.

▪ The development software uses information about the specific target device, such as propagation delays of the

gates, to perform a timing simulation of the design. For the functional simulation, the specification of the target

device was not required; but for the timing simulation, the target device must be chosen.

Device Programming (Downloading)

Once the functional and timing simulations have verified that the design is working properly, you

can initiate the download sequence. A bitstream is generated that represents the final design, and

it is sent to the target device to automatically configure it. Upon completion, the design is actually

in hardware and can be tested in-circuit

14

Device Programming (Downloading)

Once the functional and timing simulations have verified that the design is working properly, you

can initiate the download sequence. A bitstream is generated that represents the final design, and it is sent

to the target device to automatically configure it. Upon completion, the design is actually in hardware and

can be tested in-circuit

Thank You

15

	Slide 1: Digital Devices and Logic Families
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

