Jr
F\\\\

"’7@%@&#
bl dusig Gls

E-ALSHIRQAT

@

O

DIGITAL DEVICES AND LOGIC FAMILIES

ELECTRICAL DEPARTMENT

LECTURE THREE

PROGRAMMABLE LOGIC
OUTLINES

» SRAM-Based FPGAS
> FPGA Cores

» Embedded Functions
» Specific FPGA Devices

» Programmable Logic Software

SRAM-Based FPGAS

. i i goooooooooDooDOooooooo)“*®
FPQAS are either nonvolatile becauge they are based on OOO00OOnnNOO00O00O00ooD
antifuse technology or they are volatile because they are oooor” Ldo. Nopoooooo
based on SRAM technology. (The term volatile means that goor .O000 | ‘ |:_|I oooooon
all the data programmed into the configurable logic blocks goos ad H H E = H H H H H H H
are lost when power is turned off.) S H ER?pr?gr;mﬁT]E on H H H E H

- _ . . Prosrammmings L power up or reset
Thereforf:, SRAM bas§d FPGAs include either a | gramming Hioooooooooon
nonvolatile configuration memory embedded on the chip to D000O0DDDOOoooo
store the program data and reconfigure the device each Oooo00dooDoDoo

time power is turned back on or they use an external () Volatile FPGA with on-the-chip nonvolatile configuration memory

memory with data transfer controlled by a host processor.
= The concept of on-the-chip memory is illustrated in Figure

1 (a). The concept of the host processor configuration is Host

Processor

shown in part (b). ‘

Monvolatle

Programming i . . Volatile
daiz ““ﬂg‘“ﬂ;““ =P Frca

(b} Volatile FPGA with on-board memory and host processor

FIGURE 1 Basic concepts of volatile FPGA configurations.

FPGA Cores

FPGAs, as we have discussed, are essentially like “blank slates” that the end user can program for any logic design.
FPGAs are available that also contain hard-core logic.

A hard core is a portion of logic in an FPGA that is put in by the manufacturer to provide a specific function and that
cannot be reprogrammed. For example, if a customer needs a small microprocessor as part of a system design, it can be
programmed into the FPGA by the customer or it can be provided as hard core by the manufacturer.

If the embedded function has some programmable features, it is known as a soft-core function. An advantage of the
hard-core approach is that the same design can be implemented using much less of the available capacity of the FPGA
than if the user programmed it in the field, resulting in less space on the chip (“real estate) and less development time
for the user.

Also, hard-core functions have been thoroughly tested. The disadvantage of the hard core is that the specifications are
fixed during manufacturing and the customer must be able to use the hard-core logic “as 1s.” It cannot be changed later

= Hard cores are generally available for functions that are commonly used in digital systems, such as a microprocessor,
standard input/output interfaces, and digital signal processors.

= More than one hard-core function can be programmed in an FPGA. Figure 2 illustrates the concept of a hard core
surrounded by configurable logic programmed by the user. This is a basic embedded system because the hard-core
function 1s embedded in the user-programmed logic.

Hard core designs are generally developed by and are
the property of the FPGA manufacturer. Designs
owned by the manufacturer are termed intellectual
property (IP).

A company usually lists the types of intellectual
property that are available on its website. Some
intellectual properties are a mix of hard core and soft
core.

A processor that has some flexibility in the selection
and adjustment of certain parameters by the user is an
example.

Those FPGAs containing either or both hard-core
and soft-core embedded processors and other
functions are known as platform FPGAs because
they can be used to implement an entire system
without the need for external support devices.

portion of CLBs
programmed during
manufacturing for a
specific function

o | o | |
===
o | o |

Remaining CLBs
are programmed
by user.

== ===
i | i o o | o
i | i o | o | o
== ===
i | i o | o | o
i | i o o
fl=|=|=]=]=

e el e e el e ol

| o | | e
o o |]
| | o | | e
| o | | e
o o |]
| | o | | o f e
= o |]
o o |]
| | o | | o f e
OOOOOOoOOoOoOoO

=== = =
o | o o o |
o | o o o |
=== = =
o | o o o |
o | o o o |
=== = =
o | o |

===

o | o |

FIGURE 2 Basic idea of a hard-core function embedded in an FPGA.

Embedded Functions

= A block diagram of a typical FPGA is shown in
Figure 3. The FPGA contains embedded memory
functions as well as digital signal processing (DSP)
functions.

= DSP functions, such as digital filters, are
commonly used in many systems. As you can see
in the block diagram, the embedded blocks are
arranged throughout the FPGA interconnection
matrix and input/output elements (IOEs) are placed
around the FPGA perimeter.

Embedded
MEmory
[/ elements blocks

™
l I mes | { e |
o mes b raEs | { s |
{ oE -|:|- { e}
of CABs | C|. [T
of TAE p C|. { e |
of TAES p .|:|. { i |
S om | raEs |--|:|- |
o E -|:|- o= |
{ E} -|:|- { o=}
o ChE 1:|- { e}
o LAB: | C|. { LAl |
U D [
o E) .|:|. { e |
of TAES p .|:|. { iE |
T |--|:|- { s |}
-—- { TE} 1:|- o=}
._. of CAES p .|:|. { iz |

Embedded Embedded [0
Dsp Memory elements
blocks blocks l

|

P T Embedded
ho[[AE: | :|- { Lals hs mhl.ltlmnli'}f
b o T) .|:|. =+ O

-I L] F 10ks

| e I e I e e
tl.lil.i'i:"ir.—.—ﬁi'*:"i.—.—ﬁimi.—.—rm—.—.—.—hf
(| | |
(| | S|

p o TAES P‘l:|"| b o b
i'I_I_I_I'r{:F1'I_I_I_I_I'F llllllllll
.| LAES P‘l:|"| |-.|:|..| [N H:H 3

-_-1 TAE: |--|:|--| LAl kmﬁ LAE: |--|:|--| |--|:|--| Al |--|:|--| }F —

Figure 3

Example FPGA block diagram.

b LaE | { e | -|:|- { s} -|:|- { LALE F———
P DAE -|:|- { e} -|:|- { this | -|:|- 1 TAllE b ———
ho[[AEs | D e | C|. sk CII i AN b ———

Specific FPGA Devices

= Several manufacturers produce FPGAs as well as CPLDs. Table 1 lists device families from selected companies. Check
the website for the most current information.

Table |

FPGA manufacturers.

= FPGAs vary greatly in terms of complexity. Table 2 lists
some of the parameter ranges that are available. Keep in

Manufacturer Series Name(s) Design Software Wehsite
mind that these numbers are subject to change as technology Altora Siratix Quartos 1 Alteracom
advances. Aria

Cyclone
Xilinx Spartan ISE Design Suite Xilinx.com
Artixn
Kintex
Table2 N Virex
Selected FPGA parameters. Lattice iCE40 Lattice Diamond ~ Latticesemi.com
MachX02 iCEcube2
Feature Range Lattice ECP3
LatticeXFP2
Number of LEs 1,500-813.000 LatticeGC/M
Number of CLBs 26-359,000 Atmel AT40 IDS Atmel.com
Embedded memory 26 kb—63 Mb
Number of I'Os 181200
[C operating voltage 18V, 25V, 33V, 5V

Programmable Logic Software

= |n order to be useful, programmable logic must have both
hardware and software components combined into a functional
unit. All manufacturers of SPLDs, CPLDs, and FPGAs provide
software support for each hardware device. These software
packages are in a category of software known as computer-aided

design (CAD).

* The programming process is generally referred to as design flow. A
basic design flow diagram for implementing a logic design in a
programmable device is shown in Figure 4. Most specific software
packages incorporate these elements in one form or another and
process them automatically. The device being programmed 1s
usually referred to as the target device.

L

Design entry
O Schematic
U HDL
J] Synthesis
Timing
Functional simulation
simulation L1
Implementation
Device
programming
(downloading)

FIGURE 4 General design flow diagram for
programming a SPLD, CPLD, or FPGA.

You must have four things to get started programming a device: a computer, development software, a programmable
logic device (SPLD, CPLD, or FPGA), and a way to connect the device to the computer. These essentials are
illustrated in Figure 5.

Part (a) shows a computer that meets the system requirements for the particular software you are using.

Part (b) shows the software acquired either on a CD from the device manufacturer or downloaded from the device
manufacturer’s website. Most manufacturers provide free software that can be downloaded and used for a limited
time (Examples are Altera Quartus IT and Xilinx ISE.).

Part (c) shows a programmable logic device.

Part (d) illustrates two means of physically connecting the device to the computer via cable by using either the
programming fixture into which the device is nserted or the development board on which the device 1s mounted

After the software has been installed on your computer, you must become familiar with the particular software
tools before attempting to connect and program a device.

U FHUA LS i A, Vit Ak - PN B s ey |

QO3 vt REIDN LR 2!
[T Gir wan foobec Toshs b T i macs |

| Teoma 5 OACHLE o A bery R

ABEDR,

Manage Multiple Protocols %
with One Netwarking Kit o..
LT * Pay Mow 5

(d) Programming hardware (programming fixture or development board with cable for
connection to computer port)

Figure § Essential elements for programming an SPLD, CPLD, or FPGA.

(d) photo courtesy of Diailent, Inc.

10

Design Entry

Assume that you have a logic circuit design that you wish to implement in a programmable device. You can
enter the design on your computer in either of two basic ways: schematic entry or text entry. In order to use
text entry, you must be familiar with an HDL such as VHDL, Verilog, or AHDL. Most programmable logic
manufacturers provide software packages that support VHDL and Verilog because they are standard HDLs.
Some also support AHDL, ABEL, or other proprietary HDLs. Schematic entry allows you to place symbols of
logic gates and other logic functions from a library on the screen and connect them as required by your design.
A knowledge of an HDL 1s not required for schematic entry.

Functional Simulation

The purpose of the functional simulation in the design flow is to make sure that the design you entered works as it
should in terms of its logic operation, before synthesizing into a hardware design. Basically, after a logic circuit is
compiled, it can then be simulated by applying input waveforms and checking the output for all possible input
combinations. Functional simulation is accomplished graphically using a waveform editor or programmatically using
a test bench. Graphical waveform editors allow drawing of test stimulus using waveform drawing features and drag
and drop techniques.

11

Synthesis

Once the design has been entered and functionally simulated to verify that its logical operation is correct, the compiler
automatically goes through several phases to prepare the design to be downloaded to the target device. During this
synthesis phase of the design flow, the design is optimized in terms of minimizing the number of gates, replacing logic
elements with other logic elements that can perform the same function more efficiently, and eliminating any redundant
logic. The final output from the synthesis phase is a netlist that describes the optimized version of the logic circuit.

Implementation (Software)

After the design has been synthesized, the compiler implements the design, which is basically a “mapping” of the design so
that it will fit in the specific target device based on its architecture and pin configurations. This process is called fitting or
place and routing. To accomplish the implementation phase of the design flow, the software must “know” about the specific
device and have detailed pin information. Complete data on all potential target devices are generally stored in the software

library.

12

Timing Simulation

= This part of the design flow occurs after the implementation and before downloading to the target
device. The timing simulation verifies that the circuit works at the design frequency and that there are
no timing problems that will affect the overall operation. Since a functional simulation has already been
done, the circuit should work properly from a logic point of view.

= The development software uses information about the specific target device, such as propagation delays of the
gates, to perform a timing simulation of the design. For the functional simulation, the specification of the target
device was not required; but for the timing simulation, the target device must be chosen.

Device Programming (Downloading)

Once the functional and timing simulations have verified that the design is working properly, you
can initiate the download sequence. A bitstream is generated that represents the final design, and
it 1s sent to the target device to automatically configure it. Upon completion, the design is actually
in hardware and can be tested in-circuit

13

Device Programming (Downloading)

Once the functional and timing simulations have verified that the design is working properly, you
can 1nitiate the download sequence. A bitstream is generated that represents the final design, and it is sent
to the target device to automatically configure it. Upon completion, the design is actually in hardware and

can be tested in-circuit

14

Thank You

15

	Slide 1: Digital Devices and Logic Families
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

