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EXAMPLE 11-2  

 Consider the system shown in Figure 11–12(a). 

with dominant closed-loop poles s=-0.3307± 

j0.5846. It is desired to increase the static velocity 

error constant Kv to about 5 sec–1 without 

appreciably changing the location of the dominant 

closed-loop poles. s=-0.3± j0.55                                             Figure 11-12(a) Control system; 

Solution  

The feedforward transfer function is                             . the static velocity error constant is 

0.53 sec–1.The root-locus plot for the system is shown in Figure 11–12(b). The closed-loop 

transfer function becomes                                              

 

The dominant closed-loop poles are  

The damping ratio of the dominant closed-loop poles is ζ = 0.491. The undamped natural 

frequency of the dominant closed-loop poles is 

0.673 rad_sec. The static velocity error constant is 

0.53 sec–1. It is desired to increase the static 

velocity error constant Kv to about 5 sec–1 without 

appreciably changing the location of the dominant 

closed-loop poles. To meet this specification, let us 

insert a lag compensator as given by Equation    

(11–2) in cascade with the given feedforward 

transfer function. To increase the static velocity 

error constant by a factor of about 10.                                              (b) root-locus plot. 

let us choose B=10 and place the zero and pole of the lag compensator at s=–0.05 and   

s=–0.005, respectively. The transfer function of the lag compensator become 
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The root-locus plot for the compensated system near the dominant closed-loop poles is 

shown in Figure 11–13(a), together with the original root-locus plot. Figure 11–13(b) shows 

the root-locus plot of the compensated system   

   

Figure 11–13 (a) Root-locus plots of the compensated system and uncompensated system; (b) root-locus plot 

of compensated system near the origin. 

The open-loop gain K is determined from the magnitude condition as follows: 
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11–4 Lag–Lead Compensation 

Lead compensation basically speeds up the response and increases the stability of the 

system. Lag compensation improves the steady-state accuracy of the system, but reduces the 

speed of the response. If improvements in both transient response and steady-state response 

are desired, then both a lead compensator and a lag compensator may be used simultaneously. 

Rather than introducing both a lead compensator and a lag compensator as separate units, 

however, it is economical to use a single lag–lead compensator. 

Lag–lead compensation combines the advantages of lag and lead compensations. Since the 

lag–lead compensator possesses two poles and two zeros, such a compensation increases the 

order of the system by 2, unless cancellation of pole(s) and zero(s) occurs in the compensated 

system. 

11-4-1 Electronic Lag–Lead Compensator Using Operational Amplifiers.  

Figure 11–14 shows an electronic lag–lead compensator using operational amplifiers. The 

transfer 

 
Figure 11-14 Lag–lead compensator. 

The transfer function of the compensator shown in Figure 11–14 is 

11.3 

 

Let us define 
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Then Equation (11-3) becomes 

 

                 

                                                                                                                                          11.4 

 

 

Where 

 

Note that γ is often chosen to be equal to β. 

11-4-2 Lag–lead Compensation Techniques Based on the Root-Locus Approach. 

Consider the system shown in Figure 11-14. Assume that we use the lag–lead compensator 

 

 

                                                                                                                                     11.5 

 

 

where β >1 and γ >1 (Consider Kc to belong to the lead portion of the lag–lead compensator.) 

In designing lag–lead compensators, we consider two cases where γ ≠ β and γ=β 

Case 1 γ ≠ β. In this case, the design process is a combination of the design of the lead 

compensator and that of the lag compensator. The design procedure for the lag–lead 

compensator follows: 

1. From the given performance specifications, determine the desired location for the 

dominant closed-loop poles. 

2. Using the uncompensated open-loop transfer function G(s), determine the angle 

deficiency ϕ if the dominant closed-loop poles are to be at the desired location. The phase-lead 

portion of the lag–lead compensator must contribute this angle ϕ. 

3. Assuming that we later choose T2 sufficiently large so that the magnitude of the lag portion 
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Figure 11–15 Control system. 

is approximately unity, S=S1 where is one of the dominant closed-loop poles, choose the 

values of T1 and γ from the requirement that 

 
The choice of T1 and γ is not unique. (Infinitely many sets of T1 and γ are possible.) 

Then determine the value of Kc from the magnitude condition: 

 
4. If the static velocity error constant Kv is specified, determine the value of β to satisfy 

the requirement for Kv .The static velocity error constant Kv is given by 
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where Kc and γ are already determined in step 3. Hence, given the value of Kv, the value 

of β can be determined from this last equation. Then, using the value of β thus determined, 

choose the value of T2 such that 

 

(The preceding design procedure is illustrated in Example 11–3.) 

Case 2 β=γ. If β=γ is required in Equation (11–5), then the preceding design procedure for 

the lag–lead compensator may be modified as follows: 

1. From the given performance specifications, determine the desired location for the 

dominant closed-loop poles 

2. The lag–lead compensator given by Equation (11–5) is modified to 

 

                                                                                                                                       11.6 

 

 

where β>1. The open-loop transfer function of the compensated system is Gc(s)G(s). If the 

static velocity error constant Kv is specified, determine the value of constant Kc from the 

following equation: 

 

3. To have the dominant closed-loop poles at the desired location, calculate the angle 

contribution ϕ needed from the phase-lead portion of the lag–lead compensator. 

4. For the lag–lead compensator, we later choose T2 sufficiently large so that 
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is approximately unity, where S=S1 is one of the dominant closed-loop poles. Determine 

the values of and β from the magnitude and angle conditions: 

 

5. Using the value of β just determined, choose T2 so that 

The value of βT2 the largest time constant of the lag–lead compensator, should not be too 

large to be physically realized 

EXAMPLE 11-4 Consider the control system shown in Figure 11–16.  

 

Figure 11-16 Control system. 

It is desired to make the damping ratio of the dominant closed-loop poles equal to 0.5 and 

to increase the undamped natural frequency to 5 rad/sec and the static velocity error constant 

to 80 sec–1. Design an appropriate compensator to meet all the performance specifications. 

Solution  

The feedforward transfer function is 
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This system has closed-loop poles at        s = -0.2500 ± j1.9843 

The damping ratio is 0.125, the undamped natural frequency is 2 rad/sec, and the static 

velocity error constant is 8 sec–1. 

Let us assume that we use a lag–lead compensator having the transfer function 

 

where γ is not equal to β. Then the compensated system will have the open-loop transfer 

function 

 

From the performance specifications, the dominant closed-loop poles must be at 

 

the phase-lead portion of the lag–lead compensator must contribute 55° so that the root locus 

passes through the desired location of the dominant closed-loop poles. 

To design the phase-lead portion of the compensator, we first determine the location of the 

zero and pole that will give 55° contribution. There are many possible choices, but we shall 

here choose the zero at s=–0.5 so that this zero will cancel the pole at s=–0.5 of the plant. Once 

the zero is chosen, the pole can be located such that the angle contribution is 55°. By simple 

calculation or graphical analysis, the pole must be located at s=–5.02. Thus, the phase-lead 

portion of the lag–lead compensator becomes 
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Next, we determine the value of Kc from the magnitude condition: 

 
The phase-lag portion of the compensator can be designed as follows: First the value of β 

is determined to satisfy the requirement on the static velocity error constant: 

 

β = 16.04 

Finally, we choose the value T2 such that the following two conditions are satisfied: 

 

We may choose several values for T2 and check if the magnitude and angle conditions are 

satisfied. After simple calculations we find for T2 = 5 

 

Now the transfer function of the designed lag–lead compensator is given by 
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The compensated system will have the open-loop transfer function 

 
The characteristic equation for the compensated system is 

 
The new damping ratio is ζ=0. 491.Therefore the compensated system meets all the 

required performance specifications. 

 

EXAMPLE 11–4 Consider the control system of Example 11–3 again. Suppose that we 

use a lag–lead compensator of the form given by Equation (11–6), or 

 

SOLUTION  

The desired locations for the dominant closed-loop poles are at s = -2.50±j4.33 

The open-loop transfer function of the compensated system is 

 

Since the requirement on the static velocity error constant Kv is 80 sec–1, we have 

                                                                                                     Kc=10 

The time T1 constant and the value of β are determined from 

 



 CHAPTER 11     DESIGN OF CONTROL SYSTEMS         ASST. LECTURER   AHMED SAAD 

25 

 

 

(The angle deficie ncy of 55° was obtained in Example 11–3.)  

If   
1

T1
 =2.38. →   

𝛽

T1
  =  8.34 

 

The phase-lead portion of the lag–lead network thus becomes 

 

For the phase-lag portion, we choose T2 such that it satisfies the conditions 

 

if we choose T2=10, then 

1 > magnitude > 0.99, -1° < angle < 0° 

Since T2 is one of the time constants of the lag–lead compensator, it should not be too 

large.  

 

Thus, the lag–lead compensator becomes 

 

The compensated system will have the open-loop transfer function 

 


