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11-1 Design by Root-Locus Method.  

The design by the root-locus method is based on reshaping the root locus of the system 

by adding poles and zeros to the system’s open-loop transfer function and forcing the root 

loci to pass through desired closed-loop poles in the s plane. The characteristic of the root-

locus design is its being based on the assumption that the closed-loop system has a pair of 

dominant closed-loop poles. This means that the effects of zeros and additional poles do not 

affect the response characteristics very much. 

In essence, in the design by the root locus method, the root loci of the system are reshaped 

through the use of a compensator so that a pair of dominant closed-loop poles can be placed 

at the desired location. 

Series Compensation and Parallel (or Feedback) Compensation. Figures 11–1(a) and 

(b) show compensation schemes commonly used for feedback control systems. Figure 11–

1(a) shows the configuration where the compensator Gc(s) is placed in series with the plant. 

This scheme is called series compensation. An alternative to series compensation is to feed 

back the signal(s) from some element(s) and place a compensator in the resulting inner 

feedback path, as shown in Figure 11–1(b). Such compensation is called parallel 

compensation or feedback compensation. 

 

Figure 11–1 (a) Series compensation; (b) parallel or feedback compensation 
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In general, series compensation may be simpler than parallel compensation; however, 

series compensation frequently requires additional amplifiers to increase the gain and/or to 

provide isolation. (To avoid power dissipation, the series compensator is inserted at the 

lowest energy point in the feedforward path.) Note that, in general, the number of 

components required in parallel compensation will be less than the number of components 

in series compensation, provided a suitable signal is available, because the energy transfer 

is from a higher power level to a lower level. (This means that additional amplifiers may not 

be necessary.) 

Commonly Used Compensators. If a sinusoidal input is applied to the input of a 

network, and the steady-state output (which is also sinusoidal) has a phase lead, then the 

network is called a lead network. (The amount of phase lead angle is a function of the input 

frequency.) If the steady-state output has a phase lag, then the network is called a lag 

network. In a lag–lead network, both phase lag and phase lead occur in the output but in 

different frequency regions; phase lag occurs in the low-frequency region and phase lead 

occurs in the high-frequency region.A compensator having a characteristic of a lead 

network, lag network, or lag–lead network is called a lead compensator, lag compensator, 

or lag–lead compensator. Frequently used series compensators in control systems are lead, 

lag, and lag–lead compensators. PID controllers which are frequently used in industrial 

control systems will be discussed in later. 

11.1.1 Effects of the Addition of Poles.  

The addition of a pole to the open-loop transfer function has the effect of pulling the root 

locus to the right, tending to lower the system’s relative stability and to slow down the 

settling of the response. (Remember that the addition of integral control adds a pole at the 

origin, thus making the system less stable.) Figure 11–2 shows examples of root loci 

illustrating the effects of the addition of a pole to a single-pole system and the addition of 

two poles to a single-pole system. 
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Figure 11–2 (a) Root-locus plot of a single-pole system; (b) root-locus plot of a two-

pole system; (c) root-locus plot of a three-pole system. 

11.1.2 Effects of the Addition of Zeros.  

The addition of a zero to the open-loop transfer function has the effect of pulling the root 

locus to the left, tending to make the system more stable and to speed up the settling of the 

response. (Physically, the addition of a zero in the feedforward transfer function means the 

addition of derivative control to the system. The effect of such control is to introduce a 

degree of anticipation into the system and speed up the transient response.) Figure 11–3(a) 

shows the root loci for a system 

 

Figure 11–3 (a) Root-locus plot of a three-pole system; (b), (c), and (d) root-locus plots 

showing effects of addition of a zero to the three-pole system. 
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that is stable for small gain but unstable for large gain. Figures 11–3 (b), (c), and (d) show 

root-locus plots for the system when a zero is added to the open-loop transfer function. 

Notice that when a zero is added to the system of Figure 11–3 (a), it becomes stable for all 

values of gain. 

11–2 Lead Compensation 

In Section 11–1 we presented an introduction to compensation of control systems and 

discussed preliminary materials for the root-locus approach to control-systems design and 

compensation. In this section we shall present control-systems design by use of the lead 

compensation technique. In carrying out a control-system design, we place compensator in 

series with the unalterable transfer function G(s) to obtain desirable behaviour. The main 

problem then involves the judicious choice of the pole(s) and zero(s) of the compensator 

Gc(s) to have the dominant closed-loop poles at the desired location in the s plane so that 

the performance specifications will be met. 

Lead Compensators and Lag Compensators. There are many ways to realize lead 

compensators and lag compensators, such as electronic networks using operational 

amplifiers, electrical RC networks, and mechanical spring-dashpot systems. Figure 11–4 

shows an electronic circuit using operational amplifiers. The transfer function for this circuit 

was obtained in Chapter 2 as follows  

  

 

 

 

 

 

 

 

                                                                                                                       11.1 
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Figure 11–4 Electronic circuit that is a lead network if R1C1 ˃R2C2. and a lag network if R1C1 ˂ R2C2 

 

Figure 11–5 Pole-zero configurations: (a) lead network; (b) lag network 

Notice that 

 

This network has a dc gain of Kcα= R2 R4/R1R3. 

 

From Equation (11–1), we see that this network is a lead network if 

R1C1 ˃ R2 C2 or α < 1. It is a lag network if R1C1< R2C2 The pole-zero configurations 

of this network when. R1 C1 > R2 C2. R1 C1 < R2 C2. are shown in Figure 11=5 (a) and 

(b), respectively 
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11.2.1 Lead Compensation Techniques Based on the Root-Locus Approach  

The root-locus approach to design is very powerful when the specifications are given in 

terms of time-domain quantities, such as the damping ratio and undamped natural frequency 

of the desired dominant closed-loop poles, maximum overshoot, rise time, and settling time. 

Consider a design problem in which the original system either is unstable for all values of 

gain or is stable but has undesirable transient-response characteristics. In such a case, the 

reshaping of the root locus is necessary in the broad neighbourhood of the jw axis and the 

origin in order that the dominant closed-loop poles be at desired locations in the complex 

plane. This problem may be solved by inserting an appropriate lead compensator in cascade 

with the feedforward transfer function. The procedures for designing a lead compensator for 

the system shown in Figure 11–6 by the root-locus method may be stated as follows: 

1. From the performance specifications, determine the desired location for the dominant 

closed-loop poles. 

 
Figure 11–6 Control system. 

2. By drawing the root-locus plot of the uncompensated system (original system), 

ascertain whether or not the gain adjustment alone can yield the desired closed loop poles. 

If not, calculate the angle deficiency ϕ. This angle must be contributed by the lead 

compensator if the new root locus is to pass through the desired locations for the dominant 

closed-loop poles. 

3.  Assume the lead compensator Gc(s) to be  

 

where α and T are determined from the angle deficiency. Kc is determined from the 

requirement of the open-loop gain. 
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4. If static error constants are not specified, determine the location of the pole and zero of 

the lead compensator so that the lead compensator will contribute the necessary angle f. If 

no other requirements are imposed on the system, try to make the value of a as large as 

possible. A larger value of a generally results in a larger value of Kv, which is desirable. 

Note that 

 

5. Determine the value of Kc of the lead compensator from the magnitude condition. 

EXAMPLE 11–1 Consider the position control system shown in Figure 11–7(a). The 

feedforward transfer function is  

Design system to get Assume Mp <0.17 

Solution  

The root-locus plot for this system is shown in Figure 11–7(b).The closed-loop transfer 

function for the system is 

 

 

Figure 11–7 (a) Control system; (b) root-locus plot. 
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The closed-loop poles are located at s = -0.5 ± j3.1225. The damping ratio of the closed-

loop poles is ζ =(1/2)/(√10) = 0.1581. The undamped natural frequency of the closed-loop 

poles wn=(√10)  is = 3.1623 rad/sec. Because the damping ratio is small, this system will 

have a large overshoot in the step response and is not desirable.MP  

MP=0.604  

To reduce MP to <0.17 It is desired to design a lead compensator Gc(s) as shown in Figure 

11-8 (a) so that the dominant closed-loop poles have the damping ratio ζ= 0.5 and the 

undamped natural frequency wn = 3 rad/sec. & MP= 0.163. The desired location of the 

dominant closed-loop poles can be determined from  

 

 

Figure 11–8 (a) Compensated system; (b) desired closed-loop pole location. 

[See Figure 11-8  (b).] In some cases, after the root loci of the original system have been 

obtained, the dominant closed-loop poles may be moved to the desired location by simple 

gain adjustment. This is, however, not the case for the present system. Therefore, we shall 

insert a lead compensator in the feedforward path. A general procedure for determining the 

lead compensator is as follows: First, find the sum of the angles at the desired location of 

one of the dominant closed-loop poles with the open-loop poles and zeros of the original 

system, and determine the necessary angle ϕ to be added so that the total sum of the angles 

is equal to ;180°(2k + 1).  The lead compensator must contribute this  angle ϕ. (If the angle 

f is quite large, then two or more lead networks may be needed rather than a single one.) 
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Assume that the lead compensator Gc(s) has the transfer function as follows: 

 

The angle from the pole at the origin to the desired dominant closed-loop pole at s = –

1.5+j2.5981 is 120°.The angle from the pole at s=–1 to the desired closed-loop pole is 

100.894°. Hence, the angle deficiency is Angle deficiency=180° – 120° – 100.894°= 

 - 40.894°   or -ϕ-180= 

-Φ= 180-220.894=- 40.894° 

Deficit angle (ϕ) 40.894° must be contributed by a lead compensator. 

then the locations of the zero and pole are found as follows: zero at s= –1.9432 

∠ 
(𝑠+1.9423)

(𝑠+𝑝𝑐)
|s=-1.5+j2.5981= 40.894   pole at s= –4.6458  
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Figure 11–9 Determination of the pole and zero of the lead compensator 

 

Figure 11–10 Root-locus plot of the designed system. 

Figure 11–10 shows the root-locus plot for the designed system.  It is worthwhile to check 

the static velocity error constant Kv for the system just designed. 



 CHAPTER 11     DESIGN OF CONTROL SYSTEMS         ASST. LECTURER   AHMED SAAD 

11 

 

 

Note that the third closed-loop pole of the designed system is found by dividing the 

characteristic equation by the known factors as follows: 

 

 

11–3 Lag Compensation 

Electronic Lag Compensator Using Operational Amplifiers. The configuration of 

the electronic lag compensator using operational amplifiers is the same as that for the 

lead compensator shown in Figure 11–4. If we choose R2C2>R1C1 in the circuit shown 

in Figure 6–36, it becomes a lag compensator. Referring to Figure 11–4, the transfer 

function of the lag compensator is given by 

 

Note that we use β instead of α in the above expressions. [In the lead compensator we 

used a to indicate the ratio R2C2>R1C1, which was less than 1, or 0<α<1. We always 

assume that 0<α<1and β>1. 

11.3.1 Lag Compensation Techniques Based on the Root-Locus Approach.  

Consider the problem of finding a suitable compensation network for the case where the 

system exhibits satisfactory transient-response characteristics but unsatisfactory steady-

state characteristics. Compensation in this case essentially consists of increasing the open 

loop gain without appreciably changing the transient-response characteristics. This means 
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that the root locus in the neighbourhood of the dominant closed-loop poles should not be 

changed appreciably, but the open-loop gain should be increased as much as needed. This 

can be accomplished if a lag compensator is put in cascade with the given feedforward 

transfer function. To avoid an appreciable change in the root loci, the angle contribution of 

the lag network should be limited to a small amount, say less than 5°.To assure this, we 

place the pole and zero of the lag network relatively close together and near the origin of the 

s plane. Then the closed-loop poles of the compensated system will be shifted only slightly 

from their original locations. Hence, the transient-response characteristics will be changed 

only slightly. 

Consider a lag compensator Gc(s), where 

 

                                                                                                                               11.2 

 

 

If we place the zero and pole of the lag compensator very close to each other, then at  

s = s1, where s1 is one of the dominant closed-loop poles, the magnitudes s1 + (1/T)  and 

s1 + 1/(βT) are almost equal, or  

 

To make the angle contribution of the lag portion of the compensator small, we require 

 

This implies that if gain Ǩc of the lag compensator is set equal to 1, the alteration in the 

transient-response characteristics will be very small, despite the fact that the overall gain of 

the open-loop transfer function is increased by a factor of β, where β>1. If the pole and zero 
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are placed very close to the origin, then the value of b can be made large. (A large value of 

β may be used, provided physical realization of the lag compensator is possible.) It is noted 

that the value of T must be large, but its exact value is not critical. However, it should not 

be too large in order to avoid difficulties in realizing the phase-lag compensator by physical 

components. An increase in the gain means an increase in the static error constants. If the 

open loop transfer function of the uncompensated system is G(s), then the static velocity 

error constant Kv of the uncompensated system is 

Kv=lim
s→0

sG(s) 

If the compensator is chosen as given by Equation (11–2), then for the compensated 

system with the open-loop transfer function Gc(s)G(s) the static velocity error constant Ǩv 

becomes                                                                                                   where Kv is the 

static velocity error constant of the uncompensated system. Thus, if the compensator is given 

by Equation (11-2), then the static velocity error constant is increased by a factor of Ǩc β, 

where Ǩc approximately unity. 

11.3.2 Design Procedures for Lag Compensation by the Root-Locus Method.  

The procedure for designing lag compensators for the system shown in Figure 11-11 by 

the root-locus method may be stated as follows (we assume that the uncompensated system 

meets the transient-response specifications by simple gain adjustment;  

1. Draw the root-locus plot for the uncompensated system whose open-loop transfer 

function is G(s). Based on the transient-response specifications, locate the dominant closed-

loop poles on the root locus. 

2. Assume the transfer function of the lag compensator to be given by Equation (11-2): 

 

Then the open-loop transfer function of the compensated system becomes Gc(s)G(s). 

3. Evaluate the particular static error constant specified in the problem. 

4. Determine the amount of increase in the static error constant necessary to satisfy 

the specifications. 
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5. Determine the pole and zero of the lag compensators that produce the necessary 

increase in the particular static error constant without appreciably altering the original root 

loci. (Note that the ratio of the value of gain required in the specifications and the gain found 

in the uncompensated system is the required ratio between the distance of the zero from the 

origin and that of the pole from the origin.) 

6. Draw a new root-locus plot for the compensated system. Locate the desired dominant 

closed-loop poles on the root locus. (If the angle contribution of the lag network is very 

small—that is, a few degrees—then the original and new root loci are almost identical. 

Otherwise, there will be a slight discrepancy between them. Then locate, on the new root 

locus, the desired dominant closed-loop poles based on the transient-response 

specifications.) 

7. Adjust gain Ǩc of the compensator from the magnitude condition so that the dominant 

closed-loop poles lie at the desired location. Ǩc will be approximately 1. 

 

Figure 11–11 Control system 


