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10. 1ntroduction  

Using Routh-Hurwitz criterion, only the absolute stability of a system can be found out. 

On the other hand, the Nyquist criterion uses a different approach for finding the stability 

of a system. It focuses also on the relative stability of the system. It is possible to determine 

the stability of closed-loop pole from open-loop pole without knowing the roots of the 

closed-loop system. Nyquist plot is based on polar plot. The aim of this chapter is to 

introduce the Nyquist plot as well as the stability analysis of the system. 

10.1 Basic Definitions 

Encircled: If point is found to be inside the path, the point is said to be encircled by the 

closed path. Figure 10.1 shows that point X is encircled by the closed path where the point 

Y is not encircled by the closed path. 

 

Fig 10.1 

Enclosed: If a path is traversed in the clockwise direction and the point is found to lie 

to the right of the path, the point is said to be enclosed by the path. Figure 10.2(a) shows 

that point X is enclosed by the path, whereas point Y is enclosed by the path in Figure 

10.2(b). 

 

 

 

 

 

Fig. 10.2 Definition of enclosed 



 CHAPTER 10             NYQUIST PLOT                                ASST. LECTURER   AHMED SAAD 

2 

 

10.2 Nyquist Analysis 

10.2.1 Mapping Theorem and the Principle of Argument 

Let us consider a function as follows 

 

Let us take a path of s in the s-plane for the following cases: 

(1) No poles or zeros of GH(s) are covered. 

(2) Only zero is covered. 

(3) Only pole is covered. 

(4) One pole and one zero are covered. 

(5) Two, three, etc. zeros are covered 

(6) Two, three, etc. poles are covered. 

(7) Entire s-plane. 

Let us discuss the above cases one by one. 

Case 1: No poles and zeros covered 

For the right-hand side of the travel direction, the region enclosed by ABCDEF and the 

corresponding region may be ABCDEF in the G(jw) plane. The origin covered by 

ABCDEF is important rather than its shape. 

 

Fig. 10.3 Case l 
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Case 2: One zero only is covered 

The origin is enclosed here only once in the clockwise (CW ) direction. 

 

Fig. 10.4 Case 2 

Case 3: One pole only is covered 

The origin is enclosed here only once in the counter-clockwise (CCW ) direction. 

 

Fig. 15.5 Case 3 

Case 4: One pole and one zero is covered 

 

Fig. 10.6 Case 4 

Figure 10.6 shows that the origin is not covered here. 
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Case 5:   2,3, etc. zeros covered 

There may be two, three, etc. times the origin is enclosed in the GH(jw) plane in the 

CW direction, i.e., the number of zeros is equal to the number of CW encirclements about 

the origin. 

Case 6:     2,3, etc. poles covered 

There may be two, three, etc. times the origin is enclosed in the GH(jw) plane in the 

CCW direction, i.e., the number of poles is equal to the number of CCW encirclements 

about the origin. 

Case 7: Entire s-plane/any region of the s-plane 

Suppose we choose any region in the s-plane (or the entire s-plane). If there are Z zeros 

and P poles, the number of encirclements, N, about the origin is given by 

 

N=Z-P                                                                                                                    10.1 

For Z = 4, P =2, N = 2,                        2 CW encirclements 

Z = 2, P = 2, N = 0,                              No encirclements 

Z = 2, P = 4, N = - 2                             i.e., 2 CCW encirclements 

Equation (10.1) is known as the mapping theorem. If F(s) be a ratio of two polynomials 

of s having P poles and Z zeros in some closed contour in the s-plane, this closed contour 

must pass through any pole or zero (but it can contain them). This closed contour if 

mapped into the F(s) plane will be a closed curve so that the total number of clockwise 

encirclements about the origin is given by 

N = Z – P 

10.2.2 Application of Mapping Theorem to Stability 

In polar plot jw is varied from 0 to ∞, and, in the mapping theorem discussion, we made 

s to vary in some closed contour. We can apply the above concepts to determine the 

stability. 
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The poles and zeros of the open-loop transfer function are easy to locate. Now the 

closed-loop transfer function (CLTF) is given by 

 

The poles of the CLTF must not lie in the RHP from stability considerations. The 

closed poles are obtained from 

1 + G(s)H(s) = 0 

                                                                                                                               10.2 

 

 

 

 

 

 

 

Fig. 10.7 Path covering the RHP of the s-plane (1 + R→∞) 

The poles of the closed-loop transfer function are given by q(s) = 0 

 

                                                                                                                                                        10.3   

 

i.e., zeros o f q(s) are poles o f a CLTF. 

Therefore, the zeros of q (s) [i.e., the zeros of 1 + G(s)H(s)] should not lie in the RHP 

from stability point of view. 

For given q(s), let us choose a closed contour such that it covers the entire RHP shown 

in Fig. 10.7. Plotting the Nyquist plot o f q(s) for such a closed contour, we can conclude 

whether there is zero in the RHP by examining the number of encirclements about the 

origin using the mapping theorem. For a given q(s), let us choose the RHP as path ABCDE 

with limit R—» ∞ so that we can map the RHP.  
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We can decide the stability after getting the encirclement(s) of the polar plot about the 

origin. If the contour of q(s) encloses the origin once in the clockwise direction, Z - P = 

1. If q(s) has three poles in the RHP, from Z - P = 1 we get Z = 4 or four zeros of q(s) are 

in the RHP. Here we can conclude the following: 

• Take G(s)H(s) as an open-loop transfer function.  

• Define poles of CLTF. 

• Define a function q(s) whose zeros are the poles of the CLTF. 

• Map the RHP of the s-plane in q(s). 

• Examine for the number of (zeros-poles) by noting encirclements about the origin. 

• If there are any zeros in RHP we have concluded that the system is unstable. 

Now for N = Z - P ( Z must be zero for stability) there are the following values of N 

which are possible. 

N = 0 (no encirclement) 

> 0 (clockwise encirclement, i.e., Z > P ) 

< 0 (CCW encirclement Z < P )      

Case l : If N = 0, either Z = 0 and P = 0 or Z = P. 

If N = 0, P must be 0 for stability. This is the first condition. 

Case 2: If N > 0, either P = 0 and N = Z o r Z > P. 

In both cases the number of zeros are more than poles. It indicates that there are zeros 

in the RHP given 

by Z = N + P. This is an unstable condition. 

Case 3: If N < 0, we can conclude that either Z = 0 so N = - P or N = Z - P with P > Z. 

I f N < 0, for stability the number of encirclements must be equal to the number of poles. 

This is another condition. A given system will be stable if 

• There are no clockwise encirclements about the origin and the number of poles in the 

RHP is zero. 

• There are anti-clockwise encirclement about the origin with the number of poles equal 

to the number of encirclements. 
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10.3 Polar Plots of G(S) H(S) and Stability 

From Eq. (10.2) we have 

q(s) = 1 + G(s)H(s) 

 

 

Let us have the polar plot of the RHP of the s-plane for G(s)H(s). For any zero(s) in the 

RHP we get from encirclement(s) around the origin. Modifying the function to 1 + 

G(s)H(s) and instead of redrawing the polar plot of q(s) = 1 + G(s)H(s), we can examine 

the encirclement from the polar plot of 1 + G(s)H(s) = 0 

i.e., 

G(s)H(s) = -1                                                                                                          (10.4) 

i.e., encirclement about (-1, 0) instead of (0, 0). For a given G(s)H(s) the stability of an 

open-loop transfer function system can be carried out by 

 (i) choosing a Nyquist path that maps RHP and  

(ii) plotting corresponding polar plot o f G(s)H(s). After getting the encirclements about 

( -1, 0 ) say N', in order to distinguish it from N which is the encirclement about (0, 0), 

where N ' - Z - P where Z is zeros of 1 + G(s)H(s) and P is poles o f G(s)H(s) as well as 

of 1 + G(s)H(s). 

10.4 Nyquist Path 

This path should not pass through a pole/zero, but it may contain poles and zeros. The 

path must map the RHP. Figure 10.8 shows a general Nyquist path based on these 

constraints.  
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Fig. 10.8 Nyquist path 

Table 10.1 gives the description of Fig. 10.8. 

Table 10.1 Description of Fig. 10.8 

 

15.4.1 Nyquist Stability Criterion 

A closed-loop control system having an open-loop transfer function G(s)H(s) will be 

stable if and only if 

N = - P  

where 

N = Number of counter-clockwise encirclements about (-1, 0) point in the 

G(s)H(s) plane 

P = Number of poles G(s)H(s) in the RHP. 
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If N > 0, the system is unstable with the number of zeros of 1 + G(s)H(s) in RHP Z = 

N + P  

If N< 0, i.e., (-1, 0) is not enclosed, the system is stable only for N = 0 and P = 0 or N 

= - P 

Example 10.1 For G(s)H(s) = 1/ (S + 2) draw the Nyquist plot and decide stability. 

Solution 

Step 1: Pole of G(s)H(s) is at s = -2 and there are no poles either on the jw axis or on 

the origin 

Step 2: The Nyquist path is shown in Fig. E10.1. 

 

Fig. E10.1 

For path ae s = jw where 0 < jw < ∞ 

 

The polar plot o f path ae is shown in Figure E10.1(a). 

Step 3: The dotted mirror path is of ga. 

Step 4: For path efg, s = Rejθ> where R—» ∞ and + 90° < θ< - 90°. 

 

Therefore, the infinite semicircle efg maps onto a point. 

Step 5: Connected 
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Fig E 10.1a 

Step 6: There are no encirclements about (-1, 0). 

Step 7: Since P = 0 (number of poles in the RHP) = Poles of G(s)H(s) here the 

number  of zeros of 1+G(s)H(s) in the RHP is zero. 

Z = 0, and hence system is stable. 

 

10.6 Relative Stability 

We have introduced the Nyquist criterion for the absolute stability analysis of the 

system. Using the Nyquist criterion, it is also possible to find the relative stability of the 

system. By relative stability we mean how close the system is to instability, and we can 

improve the stability of the system. The degree or extent of the system is called relative 

stability. 

I f the Nyquist polar plot is close to -1 + j0 point, the system is on the verge of the 

instability. The proximity to -1 + j0 point is specified in terms of the following two 

quantities: 

(i) Gain margin and (ii) Phase margin 

10.6.1 Gain Margin 

The gain margin is defined as the reciprocal of the open-loop transfer function 

evaluated at the frequency (wpc) at which the phase angle is -180°. 

 



 CHAPTER 10             NYQUIST PLOT                                ASST. LECTURER   AHMED SAAD 

11 

 

The frequency wpc is known as the phase crossover frequency at which the polar plot 

crosses the negative real axis. Gain margin measures the relative distance between the -1 

+ j0 point and the G(j(o)H(j(o) plot. 

Depending upon the phase crossover point X shown in Fig. 10.8, we set the gain. If the 

point X is too near the -1 + j0 point, we can decide how much to reduce the gain and if 

the point X is too far from the -1 + j0 point, we can decide how much to increase the gain. 

 

Fig 10.8 gain margin 

vector is │G(jw)H (jw)│. The gain crossover frequency is the frequency at which 

│G(jw)H (jw)│ = 1, i.e., the point of intersection of the polar plot and the (- l, j0) circle. 

Phase margin = (180° + Փ). where Փ= ∠G(jw)H (jw) and │G(jw)H (jw)│ = 1. 

 

Fig. 10.9 Phase margin 
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Here we are measuring 𝜙 in the clockwise direction, hence it is negative. For stability, 

𝜙PM must be positive as shown in Fig. 10.9(a). Therefore, 𝜙 is less than 180°. If 𝜙PM is 

negative, 𝜙 is greater than 180° and the system is unstable shown Fig. 10.9(b). 

Example 10.2 For G(s)H(s) = 30/[(s + 3) (s2 + 2s + 2)], draw the Nyquist plot and 

decide the stability. 

Solution 

Step 1: Poles of G(s)H(s) are at s = -3 and s = - 1 ± j. There is no pole at the origin 

and on the jw axis 

 

Fig. E10.2 

Step 2: The Nyquist path is shown in Fig. E10.8. 

For path ae 

s = jw and 0 < jw < ∞ 

 

The polar plot of path ae is shown in Fig. El0.8(a). 

Step 3: The dotted mirror path is of ga. 

Step 4: For path efg      S= Rejθ 
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where R —> ∞and + 90° < θ < - 90°. 

 

Therefore, the infinite semicircle efg maps onto a point. 

Step 5: Connected 

 

Fig. E10.8(a) 

Step 6: To get Q o f Fig. El0.8(a), 
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Example 10.3 For G(s) = 1 /[s(s - 2)], sketch the Nyquist plot and determine the 

stability of the system. 

Solution 

Step 1: Poles of G(s)H(s) are at s = 0, s = 2. There is a pole at the origin and no pole on 

the  jw axis. 

 

Fig. E10.3 

Step 2: The Nyquist path is shown in Fig. E10.3. 

For path ae 

s = jw and 0 < jw < ∞ 

 

The polar plot of path ae is shown in Fig. E10.3(a). 

Step 3: The dotted mirror path is of gk. 

Step 4: For path efg 

S = Rejθ 

where R —> ∞ and + 90° < θ < - 90°. 

 

Therefore, the infinite semicircle efg maps onto a point. 

For path kla 

90o 
180o 
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Therefore, the phase angle of G(s)H(s)\kla varies from + 90° to - 90°, since 0 varies 

from - 90° to +90 

 

Fig. E10.3(a) 

Step 5: Connected 

Step 6: There are encirclements about (-1 ,0 ) and N =1. 

Step 7: Since P =1 (number o f poles in the RHP) = Poles of G(s)H(s). 

Here the number of zeros of (1+ G(s)H(s)) in the RHP = 2, and hence the system is 

unstable. 

 


