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8.1 Introduction 

Root locus, a graphical presentation of the closed-loop poles as a system parameter is 

varied, is a powerful method of analysis and design for stability and transient response. 

The root locus covered in this chapter is a graphical technique that gives us the 

qualitative description of a control system's performance that we are looking for and also 

serves as a powerful quantitative tool that yields more information than the methods 

already discussed. 

Up to this point, gains and other system parameters were designed to yield a desired 

transient response for only first- and second-order systems. Even though the root locus can 

be used to solve the same kind of problem, its real power lies in its ability to provide 

solutions for systems of order higher than 2. For example, under the right conditions, a 

fourth-order system's parameters can be designed to yield a given percent overshoot and 

settling time using the concepts learned in previous Chapters. 

Before presenting root locus, let us review two concepts that we need for the ensuing 

discussion: (1) the control system problem and (2) complex numbers and their 

representation as vectors. 

8.1.1 The Control System Problem 

The poles of the open-loop transfer function are easily found (typically, they are known 

by inspection and do not change with changes in system gain), the poles of the closed-loop 

transfer function are more difficult to find (typically, they cannot be found without 

factoring the closed-loop system's characteristic polynomial, the denominator of the 

closed-loop transfer function), and further, the closed-loop poles change with changes in 

system gain. 

A typical closed-loop feedback control system is shown in Figure 8.1(a). The open-loop 

transfer function is KG(s)H(s). Ordinarily, we can determine the poles of KG(s)H(s), since 

these poles arise from simple cascaded first- or second-order subsystems. Further, 
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variations in K do not affect the location of any pole of this function. On the other hand, 

we cannot determine the poles of T(s) = KG(s)/[1 + KG(s)H(s)] unless we factor the 

denominator. Also, the poles of T(s) change with K. 

 

FIGURE 8.1 a. Closed-loop system; b. equivalent transfer function 

Let us demonstrate. Letting 

 

 



 CHAPTER 8             ROOT LOCUS TECHNIQUES        ASST. LECTURER   AHMED SAAD 

3 

 

where N and D are factored polynomials and signify numerator and denominator terms, 

respectively. We observe the following: Typically, we know the factors of the numerators 

and denominators of G(s) and H(s). Also, the zeros of T(s) consist of the zeros of G(s) and 

the poles of H(s). The poles of T(s) are not immediately known and in fact can change with 

K. For example, if G(s) = (s + 1)/[s (s + 2)] and H(s) = (s +3)/(s + 4), the poles of KG(s)H(s) 

are 0, − 2, and − 4. The zeros of KG(s)H(s) are −1 and − 3. Now, T(s) = K(s + 1)(s + 4)/[s3 

+ (6 + K)s2 + (8 + 4K)s + 3K]. Thus, the zeros of T(s) consist of the zeros of G(s) and the 

poles of H(s). The poles of T(s) are not immediately known without factoring the 

denominator, and they are a function of K. Since the system's transient response and 

stability are dependent upon the poles of T(s), we have no knowledge of the system's 

performance unless we factor the denominator for specific values of K. The root locus will 

be used to give us a vivid picture of the poles of T(s) as K varies. 

8.1.2 Vector Representation of Complex Numbers 

Any complex number, σ + jω, described in Cartesian coordinates can be graphically 

represented by a vector, as shown in Figure 8.2(a). The complex number also can be 

described in polar form with magnitude M and angle θ, as M∠θ. If the complex number is 

substituted into a complex function, F(s), another complex number will result. For 

example, if F(s) = (s + a), then substituting the complex number s = σ + jω yields F(s) = (σ 

+ a) + jω, another complex number. This number is shown in Figure 8.2(b). Notice that 

F(s) has a zero at −a. If we translate the vector a unit to the left, as in Figure 8.2(c), we 

have an alternate representation of the complex number that originates at the zero of F(s) 

and terminates on the point s = σ + jω. 
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FIGURE 8.2 Vector representation of complex numbers: a. s= σ + jω;  b.(s + a); c. alternate 

representation of (s + a); d.(s + 7) | s →5 + j2 

We conclude that (s + a) is a complex number and can be represented by a vector drawn 

from the zero of the function to the point s. For example, (s + 7) | s →5 + j2 is a complex 

number drawn from the zero of the function, -7, to the point s, which is 5 + j2, as shown in 

Figure 8.2(d). 

Now let us apply the concepts to a complicated function. Assume a function 
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where the symbol Π means “product,” m = number of zeros, and n = number of poles. 

Each factor in the numerator and each factor in the denominator is a complex number that 

can be represented as a vector. The function defines the complex arithmetic to be 

performed in order to evaluate F(s) at any point, s. Since each complex factor can be 

thought of as a vector, the magnitude, M, of F(s) at any point, s, is 

 

where a zero length, | (s + zi) |, is the magnitude of the vector drawn from the zero of 

F(s) at −zi to the point s, and a pole length, | (s + pj) |, is the magnitude of the vector drawn 

from the pole of F(s) at −pj to the point s. The angle, θ, of F(s) at any point, s, is 

 

where a zero angle is the angle, measured from the positive extension of the real axis, 

of a vector drawn from the zero of F(s) at −zi to the point s, and a pole angle is the angle, 

measured from the positive extension of the real axis, of the vector drawn from the pole 

of F(s) at −pj to the point s.As a demonstration of Eqs. (8.5) and (8.6), consider the 

following example. 
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8.2 Defining the Root Locus 

A security camera system similar to that shown in Figure 8.4(a) can automatically follow 

a subject. The tracking system monitors pixel changes and positions the camera to center 

the changes. 
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FIGURE 8.4 a. Security cameras with auto tracking can be used to follow moving objects 

automatically; b. block diagram; c. closed-loop transfer function 

The root locus technique can be used to analyze and design the effect of loop gain upon 

the system's transient response and stability. Assume the block diagram representation of 

a tracking system as shown in Figure 8.4(b), where the closed-loop poles of the system 

change location as the gain, K, is varied. Table 8.1, which was formed by applying the 

quadratic formula to the denominator of the transfer function in Figure 8.4(c), shows the 

variation of pole location for different values of gain, K. The data of Table 8.1 is 

graphically displayed in Figure 8.5(a), which shows each pole and its gain. 
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FIGURE 8.5 a. Pole plot from Table 8.1; b. root locus 

As the gain, K, increases in Table 8.1 and Figure 8.5(a), the closed-loop pole, which is 

at −10 for K = 0, moves toward the right, and the closed-loop pole, which is at 0 for K = 0, 

moves toward the left. They meet at −5, break away from the real axis, and move into the 
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complex plane. One closed-loop pole moves upward while the other moves downward. We 

cannot tell which pole moves up or which moves down. In Figure 8.5(b), the individual 

closed-loop pole locations are removed and their paths are represented with solid lines. It 

is this representation of the paths of the closed-loop poles as the gain is varied that we call 

a root locus. For most of our work the discussion will be limited to positive gain, or K ≥ 0 

8.3 Properties of the Root Locus 

In Section 8.2, we arrived at the root locus by factoring the second order polynomial in 

the denominator of the transfer function. Consider what would happen if that polynomial 

were of fifth or tenth order. Without a computer, factoring the polynomial would be quite 

a problem for numerous values of gain. We are about to examine the properties of the root 

locus. From these properties we will be able to make a rapid sketch of the root locus for 

higher-order systems without having to factor the denominator of the closed-loop transfer 

function. The properties of the root locus can be derived from the general control system 

of Figure 8.1(a). The closed-loop transfer function for the system is 

 

From Eq. (8.12), a pole, s, exists when the characteristic polynomial in the denominator 

becomes zero, or 

 

where −1 is represented in polar form as 1∠(2k + 1)180°. Alternately, a value of s is a 

closed-loop pole if 
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Equation (8.13) implies that if a value of s is substituted into the function KG(s)H(s), a 

complex number result. If the angle of the complex number is an odd multiple of 180°, that 

value of s is a system pole for some particular value of K. What value of K? Since the angle 

criterion of Eq. (8.15) is satisfied, all that remains is to satisfy the magnitude criterion, Eq. 

(8.14). Thus, 

 

We have just found that a pole of the closed-loop system causes the angle of KG(s)H(s), 

or simply G(s)H(s) since K is a scalar, to be an odd multiple of 180°. Furthermore, the 

magnitude of KG(s)H(s) must be unity, implying that the value of K is the reciprocal of 

the magnitude of G(s)H(s) when the pole value is substituted for s. Let us demonstrate this 

relationship for the second-order system of Figure 8.4. The fact that closed-loop poles exist 

at −9.47 and −0.53 when the gain is 5 has already been established in Table 8.1. For this 

system, 

 

Substituting the pole at −9.47 for s and 5 for K yields KG(s)H(s) = − 1. The student can 

repeat the exercise for other points in Table 8.1 and show that each case yields KG(s)H(s) 

= − 1. 

It is helpful to visualize graphically the meaning of Eq. (8.15). Let us apply the complex 

number concepts reviewed in Section 8.1 to the root locus of the system shown in Figure 

8.6. For this system the open-loop transfer function is 

 

The closed-loop transfer function, T(s), is 
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FIGURE 8.6 a. Example system; b. pole-zero plot of G(s) 

If point s is a closed-loop system pole for some value of gain, K, then s must satisfy Eqs. 

(8.14) and (8.15). Consider the point −2 + j3. If this point is a closed-loop pole for some 

value of gain, then the angles of the zeros minus the angles of the poles must equal an odd 

multiple of 180°. From Figure 8.7, 

 

Therefore, −2 + j3 is not a point on the root locus, or alternatively, −2 + j3 is not a closed-

loop pole for any gain. 
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FIGURE 8.7 Vector representation of G(s) from Figure 8.6(a) at −2 + j3 

If these calculations are repeated for the point −2 + j (√2/2), the angles do add up to 

180°. That is, −2 + j (√2/2) is a point on the root locus for some value of gain. We now 

proceed to evaluate that value of gain. From Eqs. (8.5) and (8.16), 

 

Looking at Figure 8.7 with the point −2 + j3 replaced by −2 + j (√2/2), the gain, K, is 

calculated as 

 

Thus, the point −2 + j (√2/2) is a point on the root locus for a gain of 0.33. We 

summarize what we have found as follows: Given the poles and zeros of the open-loop 
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transfer function, KG(s)H(s), a point in the s plane is on the root locus for a particular 

value of gain, K, if the angles of the zeros minus the angles of the poles, all drawn to the 

selected point on the s-plane, add up to (2k + 1)180°. Furthermore, gain K at that point 

for which the angles add up to (2k + 1)180° is found by dividing the product of the pole 

lengths by the product of the zero lengths. 

8.4 Sketching the Root Locus 

It appears from our previous discussion that the root locus can be obtained by sweeping 

through every point in the s-plane to locate those points for which the angles, as previously 

described, add up to an odd multiple of 180°. Although this task is tedious without the aid 

of a computer, the concept can be used to develop rules that can be used to sketch the root 

locus without the effort required to plot the locus. Once a sketch is obtained, it is possible 

to accurately plot just those points that are of interest to us for a particular problem. 

The following five rules allow us to sketch the root locus using minimal calculations. 

The rules yield a sketch that gives intuitive insight into the behaviour of a control system. 

In the next section, we refine the sketch by finding actual points or angles on the root locus 

1. Number of branches.  The number of branches of the root locus equals the number 

of closed-loop poles. As an example, look at Figure 8.5(b), where the two branches are 

shown. One originates at the origin, the other at −10. 

2. Symmetry. The root locus is symmetrical about the real axis. An example of 

symmetry about the real axis is shown in Figure 8.5(b). 

3. Real-axis segments. On the real axis, for K > 0 the root locus exists to the left of an 

odd number of real-axis, finite open-loop poles and/or finite open-loop zeros. Examine 

Figure 8.6(b). According to the rule just developed, the real-axis segments of the root locus 

are between −1 and −2 and between −3 and −4 as shown in Figure 8.9. 
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4. Starting and ending points. Where does the root locus begin (zero gain) and end 

(infinite gain)? The answer to this question will enable us to expand the sketch of the root 

locus beyond the real axis segments.  

The root locus begins at the finite and infinite poles of G(s)H(s) and ends at the finite 

and infinite zeros of G(s)H(s). Remember that these poles and zeros are the open-loop 

poles and zeros. 

In order to demonstrate this rule, look at the system in Figure 8.6(a), whose real-axis 

segments have been sketched in Figure 8.9. Using the rule just derived, we find that the 

root locus begins at the poles at −1 and −2 and ends at the zeros at −3 and −4 (see Figure 

8.10). Thus, the poles start out at −1 and −2 and move through the real-axis space between 

the two poles. They meet somewhere between the two poles and break out into the complex 

plane, moving as complex conjugates. The poles return to the real axis somewhere between 

the zeros at −3 and −4, where their path is completed as they move away from each other, 

and end up, respectively, at the two zeros of the open-loop system at −3 and −4. 

5. Behaviour at infinity. Consider applying Rule 4 to the following open-loop transfer 

function: 

 

There are three finite poles, at s = 0, − 1, and − 2, and no finite zeros. 

 

FIGURE 8.9 Real-axis segments of the root locus for the system of Figure 8.6 
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FIGURE 8.10 Complete root locus for the system of Figure 8.6 

Every function of s has an equal number of poles and zeros if we include the infinite 

poles and zeros as well as the finite poles and zeros. In this example, Eq. (8.25) contains 

three finite poles and three infinite zeros. To illustrate, let s approach infinity. The open-

loop transfer function becomes 

 

Each s in the denominator causes the open-loop function, KG(s)H(s), to become zero 

as that s approaches infinity. Hence, Eq. (8.26) has three zeros at infinity. 

We now state Rule 5, which will tell us what the root locus looks like as  it approaches 

the zeros at infinity or as it moves from the poles at  infinity. 

The root locus approaches straight lines as asymptotes as the locus  approaches 

infinity. Further, the equation of the asymptotes is  given by the real-axis intercept, σa 

and angle, θa as follows: 
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where k = 0, ±1, ±2, ±3 and the angle is given in radians with  respect to the positive 

extension of the real axis.  Notice that the running index, k, in Eq. (8.28) yields a multiplicity 

of  lines that account for the many branches of a root locus that  approach  infinity. Let us 

demonstrate the concepts with an example 

 



 CHAPTER 8             ROOT LOCUS TECHNIQUES        ASST. LECTURER   AHMED SAAD 

18 

 

If the value for k continued to increase, the angles would begin to  repeat. The number 

of lines obtained equals the difference between  the number of finite poles and the number 

of finite zeros. 

Rule 4 states that the locus begins at the open-loop poles and ends  at the open-loop zeros. 

For the example there are more open-loop  poles than open-loop zeros. Thus, there must be 

zeros at infinity.  The asymptotes tell us how we get to these zeros at infinity.  Figure 8.12 

shows the complete root locus as well as the asymptotes  that were just calculated. Notice 

that we have made use of all the  rules learned so far. The real-axis segments lie to the left 

of an odd  number of poles and/or zeros. The locus starts at the open-loop  poles and ends 

at the open-loop zeros. For the example there is only  one open-loop finite zero and three 

infinite zeros. Rule 5, then, tells  us that the three zeros at infinity are at the ends of the 

asymptotes. 

 

FIGURE 8.12 Root locus and asymptotes for the system of Figure 8.11 


