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2.2Electrical Network Transfer Functions 

In this section, we formally apply the transfer function to the mathematical modelling 

of electric circuits including passive networks and operational amplifier circuits. Subse-

quent sections cover mechanical and electromechanical systems. Equivalent circuits for 

the electric networks that we work with first consist of three passive linear components: 

resistors, capacitors, and inductors. Table 2.3 summarizes the components and the rela-

tionships between voltage and current and between voltage and charge under zero initial 

conditions. 

 

Note: The following set of symbols and units is used throughout this book: v(t) − V (volts), i(t) − A 

(amps), q(t) – Q (coulombs), C − F (farads), R − Ω (ohms), G − Ω (mhos), L − H (Henries). 

 

We now combine electrical components into circuits, decide on the input and output, 

and find the transfer function. Our guiding principles are Kirchhoff's laws. We sum volt-

ages around loops or sum currents at nodes, depending on which technique involves the 

least effort in algebraic manipulation, and then equate the result to zero. From these rela-

tionships we can write the differential equations for the circuit. Then we can take the 

Laplace transforms of the differential equations and finally solve for the transfer function. 
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Simple Circuits via Mesh Analysis 

Transfer functions can be obtained using Kirchhoff's voltage law and summing voltages 

around loops or meshes. We call this method loop or mesh analysis and demonstrate it in 

the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.6 Transfer Function—Single Loop via the Differential Equation 

PROBLEM: 

Find the transfer function relating the capacitor voltage, VC(s), to the input voltage, 

V(s) in figure below 

 

RLC network 

SOLUTION: 

In any problem, the designer must first decide what the input and output should be. In 

this network, several variables could have been chosen to be the output—for example, 

the inductor voltage, the capacitor voltage, the resistor voltage, or the current. The 

problem statement, however, is clear in this case: We are to treat the capacitor voltage 

as the output and the applied voltage as the input. Summing the voltages around the 

loop, assuming zero initial conditions, yields the integrodifferential equation for this 

network as 

Changing variables from current to charge using i(t) = dq(t)/dt yields 

 

From the voltage–charge relationship for a capacitor in Table 2.3, 

By substituting yields 

.  

 

 

 

2.12 

2.13 

2.14 
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Let us now develop a technique for simplifying the solution for future problems. First, 

take the Laplace transform of the equations in the voltage-current column of Table 2.3 

assuming zero initial conditions. For the capacitor,  

For the resistor, 

For the inductor,  

Now define the following transfer function: 

Notice that this function is similar to the definition of resistance, that is, the ratio of 

voltage to current. But, unlike resistance, this function is applicable to capacitors and 

inductors and carries information on the dynamic behavior of the component, since it 

represents an equivalent differential equation. We call this particular transfer function 

impedance. The impedance for each of the electrical elements is shown in Table 2.3. 

 Let us now demonstrate how the concept of impedance simplifies the solution for the 

transfer function. The Laplace transform of equation   

 

assuming zero initial conditions, is 

Notice that Eq. above which is in the form  

[Sum of impedances] I (s) = [Sum of applied voltages]                           2.22 

Taking the Laplace transform assuming zero initial conditions, rearranging terms, and 

simplifying yields 

Solving for the transfer function, VC(s)/V(s), we obtain 

 

 

 

                            Block diagram of series RLC electrical network 
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2.15 

2.17 

2.18 

2.19 
2.20 

2.21 



CHAPTER 2             TRANSFER FUNCTIONS          ASST. LECTURER   AHMED SAAD 

12 

 

suggests the series circuit shown in Figure below (Laplace-transformed network). Also 

notice that the circuit could have been obtained immediately from the circuit of Figure 

above (RLC network) simply by replacing each element with its impedance. We call this 

altered circuit the transformed circuit. Finally, notice that the transformed circuit leads 

immediately to Eq. (above) if we add impedances in series as we add resistors in series. 

Thus, rather than writing the differential equation first and then taking the Laplace trans-

form, we can draw the transformed circuit and obtain the Laplace transform of the differ-

ential equation simply by applying Kirchhoff's voltage law to the transformed circuit. We 

summarize the steps as follows: 

1. Redraw the original network showing all time variables, such as v(t), i(t), and vC(t), 

as Laplace transforms V(s), I(s), and VC(s), respectively. 

2. Replace the component values with their impedance values. This replacement is sim-

ilar to the case of dc circuits, where we represent resistors with their resistance values. 

We now redo Example 2.6 using the transform methods just described and bypass the 

writing of the differential equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.7 Transfer Function—Single Loop via Transform Methods 

PROBLEM: Repeat Example 2.6 using mesh analysis and transform methods 

without writing a differential equation. 

SOLUTION: 

Using Figure below and writing a mesh equation using the impedances as we would 

use resistor values in a purely resistive circuit, we obtain 

                                                         

 

                                                              Solving for I(s)/V(s), 

                                                                     

 

Laplace-transformed network 

  But the voltage across the capacitor, VC(s), is the product of the current and the impedance of the 

capacitor. Thus,                                                   

 

 

 

 

 

 

 

2.23 

2.24 
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Simple Circuits via Nodal Analysis 

Transfer functions also can be obtained using Kirchhoff's current law and summing cur-

rents flowing from nodes. We call this method nodal analysis. We now demonstrate this 

principle by redoing Example 2.6 using Kirchhoff's current law and the transform meth-

ods just described to bypass writing the differential equation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving Eq. (2.25) for I(s) substituting I(s) into Eq. (2.24), and simplifying yields the same result as 

Eq. (2.16).   

 

 

 

 

 

 

 

 

 

2.25 

 

Example 2.8 Transfer Function—Single Node via Transform Methods 

PROBLEM: 

Repeat Example 2.6 using nodal analysis and without writing a differential 

equation. 

SOLUTION: 

The transfer function can be obtained by summing currents flowing out of the node whose voltage 

is VC(s) in Figure of (Laplace-transformed network) 

. We assume that currents leaving the node are positive and currents entering the node are negative. 

The currents consist of the current through the capacitor and the current flowing through the series 

resistor and inductor. From Eq. (2.20), each I(s) = V(s)/Z(s). Hence, 

 

where VC(s)/(1/Cs) is the current flowing out of the node through the capacitor, and [VC(s) − 

V(s)]/(R + Ls) is the current flowing out of the node through the series resistor and inductor. 

Solving Eq. (2.26) for the transfer function, VC(s)/V(s), we arrive at the same result as Eq. (2.16). 

 

 

 

 

 

 

 
2.26 
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Simple Circuits via Voltage Division 

Example 2.6 can be solved directly by using voltage division on the transformed net-

work. We now demonstrate this technique.  

 

 

 

 

 

 

 

 

 

 

 

 

The previous example involves a simple, single-loop electrical network. Many elec-

trical networks consist of multiple loops and nodes, and for these circuits we must write 

and solve simultaneous differential equations in order to find the transfer function, or 

solve for the output. 

Complex Circuits via Mesh Analysis 

To solve complex electrical networks—those with multiple loops and nodes—using 

mesh analysis, we can perform the following steps: 

1. Replace passive element values with their impedances. 

2. Replace all sources and time variables with their Laplace transform. 

3. Assume a transform current and a current direction in each mesh. 

4. Write Kirchhoff's voltage law around each mesh. 

5. Solve the simultaneous equations for the output. 

6. Form the transfer function. 

Example 2.9 Transfer Function—Single Loop via Voltage Division  

PROBLEM: Repeat Example 2.6 using voltage division and the transformed 

circuit. 

SOLUTION: 

The voltage across the capacitor is some proportion of the input voltage, namely the 

impedance of the capacitor divided by the sum of the impedances. Thus, 

 

 

Solving for the transfer function, VC(s)/V(s), yields the same result as Eq. (2.16). 

Review Examples 2.6 through 2.9. Which method do you think is easiest for this 

circuit? 

 

 

2.27 



CHAPTER 2             TRANSFER FUNCTIONS          ASST. LECTURER   AHMED SAAD 

15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.10 Transfer Function—Multiple Loops 

PROBLEM: 

Given the network of Figure (a), find the transfer function, I2(s)/V(s). 

 

                               a. Two-loop electrical network 

 

SOLUTION: 

The first step in the solution is to convert the network into Laplace transforms for impedances and 

circuit variables, assuming zero initial conditions. The result is shown in Figure (b).  

 

                 b. transformed two-loop electrical network; 

The circuit with which we are dealing requires two simultaneous equations to solve for the 

transfer function. These equations can be found by summing voltages around each mesh through 

which the assumed currents, I1(s) and I2(s), flow. Around Mesh 1, where I1(s) flows, 

 

Around Mesh 2, where I2(s) flows, 

 

 
2.28 

 
2.29 
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Combining terms, Eqs. (2.28) and (2.29) become simultaneous equations in I1(s) and I2(s): 

 

 

 

We can use Cramer's rule (or any other method for solving simultaneous equations) to solve Eq. 

(2.30) for I2(s).4 Hence, 

 

 

 

 

Where 

 

 

 

Forming the transfer function, G(s), yields 

 

 

 

 

 

as shown in Figure (c). 

We have succeeded in modelling a physical network as a transfer function: The network of Figure (a) 

is now modelled as the transfer function of Figure (c). Before leaving the example, we notice a pattern 

first illustrated by Eq. (2.22). The form that Eq. (2.30) take is 

 

 

 

                                c. block diagram 

 

                                                                                                                                 

 

                                                                                                                                                

 

2.30a 

 
2.30b 

 

2.31 

 

2.32 

 

 

 

2.33a 

2.33b 
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Often, the easiest way to find the transfer function is to use nodal analysis rather than 

mesh analysis. The number of simultaneous differential equations that must be written is 

equal to the number of nodes whose voltage is unknown. In the previous example we 

wrote simultaneous mesh equations using Kirchhoff's voltage law. For multiple nodes we 

use Kirchhoff's current law and sum currents flowing from each node. Again, as a con-

vention, currents flowing from the node are assumed to be positive, and currents flowing 

into the node are assumed to be negative. Before progressing to an example, let us first 

define admittance, Y(s), as the reciprocal of impedance, or 

 

                                                                                                                     2.34 

 

When writing nodal equations, it can be more convenient to represent circuit elements 

by their admittance. Admittances for the basic electrical components are shown in Table 

2.3. Let us look at an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.11 Transfer Function—Multiple Nodes 

PROBLEM: 

Find the transfer function, VC(s)/V(s), for the circuit in Figure 2.6(b). Use nodal analysis. 

SOLUTION: 

For this problem, we sum currents at the nodes rather than sum voltages around the meshes. From 

Figure 2.6(b) the sum of currents flowing from the nodes marked VL(s) and VC(s) are, 

respectively, 

 

                                                                                                                                     2.35a 

 

                                                                                                                                    2.35b  

              

   Rearranging and expressing the resistances as conductances,5 G1 = 1/R1 and G2 = 1/R2, we 

obtain 

                                                                                                                          2.36a 

 

 

 



CHAPTER 2             TRANSFER FUNCTIONS          ASST. LECTURER   AHMED SAAD 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−G2VL (s) + (G2 + Cs) VC (s) = 0                                                                    2.36b 

Solving for the transfer function, VC(s)/V(s), yields Eq. (2.37) as shown in Figure below. 

 

 

 

 

 

 

 

 

                                 Block diagram of the network  
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