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2.1 Laplace Transform Review 

A system represented by a differential equation is difficult to model as a block dia-

gram. Thus, we now lay the groundwork for the Laplace transform, with which we can 

represent the input, output, and system as separate entities. Further, their interrelation-

ship will be simply algebraic. Let us first define the Laplace transform and then show 

how it simplifies the representation of physical systems (Nilsson,1996). The Laplace 

transform is defined as     

 

 

where s = σ + jω, a complex variable. Thus, knowing f(t) and that the integral in Eq. 

(2.1) exists, we can find a function, F(s), that is called the Laplace transform of f(t). The 

notation for the lower limit means that even if f(t) is discontinuous at t = 0, we can start 

the integration prior to the discontinuity as long as the integral converges. Thus, we can 

find the Laplace transform of impulse functions. This property has distinct advantages 

when applying the Laplace transform to the solution of differential equations where the 

initial conditions are discontinuous at t = 0. Using differential equations, we have to 

solve for the initial conditions after the discontinuity knowing the initial conditions be-

fore the discontinuity. Using the Laplace transform we need only know the initial con-

ditions before the discontinuity. The inverse Laplace transform, which allows us to find 

f(t) given F(s), is 

 

 

 

where 

u (t) = 1     t > 0     

        = 0     t < 0 

is the unit step function. Multiplication of f(t) by u(t) yields a time function that is 

zero for t < 0. 

2.1 

2.2 
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Using Eq. (2.1), it is possible to derive a table relating f(t) to F(s) for specific cases. 

Table 2.1 shows the results for a representative sample of functions. If we use the ta-

bles, we do not have to use Eq. (2.2), which requires complex integration, to find f(t) 

given F(s). In the following example we demonstrate the use of Eq. (2.1) to find the 

Laplace transform of a time function. 
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1. For this theorem to yield correct finite results, all roots of the denominator of F(s) 

must have negative real parts, and no more than one can be at the origin. 

2. For this theorem to be valid, f(t) must be continuous or have a step discontinuity at 

t = 0 (i.e., no impulses or their derivatives at t = 0). In addition to the Laplace transform 

table, Table 2.1, we can use Laplace transform theorems, listed in Table 2.2, to assist in 

transforming between f(t) and F(s). In the next example, we demonstrate the use of the 

Laplace transform theorems shown in Table 2.2 to find f(t) given F(s). 
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Partial-Fraction Expansion 

To find the inverse Laplace transform of a complicated function, we can convert the 

function to a sum of simpler terms for which we know the Laplace transform of each 

term. The result is called a partial-fraction expansion. If F1(s) = N(s)/D(s), where the 

order of N(s) is less than the order of D(s), then a partial-fraction expansion can be made. 

If the order of N(s) is greater than or equal to the order of D(s), then N(s) must be divided 

by D(s) successively until the result has a remainder whose numerator is of order less 

than its denominator. For example, if 

 

 

we must perform the indicated division until we obtain a remainder whose numera-

tor is of order less than its denominator. Hence, 

 

Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the 

differentiation theorem (Item 7) and the linearity theorem (Item 3 of Table 2.2), we ob-

tain 

 

2.4 

2.5 
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Using partial-fraction expansion, we will be able to expand functions like  

F(s) = 2/ (s2 + s + 5) into a sum of terms and then find the inverse Laplace transform for 

each term. We will now consider three cases and show for each case how an F(s) can be 

expanded into partial fractions. 

Case 1. Roots of the Denominator of F(s) Are Real and Distinct 

An example of an F(s) with real and distinct roots in the denominator is 

 

The roots of the denominator are distinct, since each factor is raised only to unity 

power. We can write the partial-fraction expansion as a sum of terms where each factor 

of the original denominator forms the denominator of each term, and constants, called 

residues, form the numerators. Hence, 

 

To find K1, we first multiply Eq. (2.8) by (s + 1), which isolates K1. Thus, 

 

Letting s approach −1 eliminates the last term and yields K1 = 2. Similarly, K2 can 

be found by multiplying Eq. (2.8) by (s + 2) and then letting s approach −2; hence, K2 

= − 2. Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f(t) is the sum of 

the inverse Laplace transform of each term, or 

 

 

 

2.6 

2.7 

2.8 

2.9 

2.10 
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Example 2.3 Laplace Transform Solution of a Differential Equation 

PROBLEM:  

Given the following differential equation, solve for y(t) if all initial conditions are zero. 

Use the Laplace transform        

 

SOLUTION: 

Substitute the corresponding F(s) for each term in Eq. (2.11), using Item 2 in Table 2.1, 

Items 7 and 8 in Table 2.2, and the initial conditions of y(t) and dy(t)/dt given by y (0 −) = 

0 and y (0−) = 0, respectively. Hence, the Laplace transform of Eq. (2.11) is 

 Solving for the response, Y(s), yields 

 To solve for y(t), we notice that Eq. does not 

match any of the terms in Table 2.1. Thus, we form the partial-fraction expansion of the 

right-hand term and match each of the resulting terms with F(s) in Table 2.1. Therefore, 

 

   

Hence,                                         Since each of the three component parts of Eq. is 

represented as an F(s) in Table 2.1, y(t) is the sum of the inverse Laplace transforms of 

each term. Hence, 

 

2.11 
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Case 2. Roots of the Denominator of F(s) Are Real and Repeated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.4  F(s) with real and repeated roots in the denominator is 

F(s)=
2

(𝑠+1)(𝑠+2)2  

SOLUTION: 

The roots of (s + 2)2 in the denominator are repeated, since the factor is raised to an integer 

power higher than 1. In this case, the denominator root at −2 is a multiple root of multiplicity 

2. We can write the partial-fraction expansion as a sum of terms, where each factor of the 

denominator forms the denominator of each term. In addition, each multiple roots generates 

additional terms consisting of denominator factors of reduced multiplicity. 

𝐹(𝑠) =
2

(𝑠 + 1)(𝑠 + 2)2
      =       

𝐴

𝑠 + 1
+

𝐵

(𝑠 + 2)2
+

𝐶

𝑠 + 2
  

then A = 2, which can be found as previously described. B can be isolated by 

multiplying Eq. (2.23) by (s + 2)2, yielding 

2

𝑠 + 1
      =       

(𝑠 + 2)2𝐴

𝑠 + 1
+ 𝐵 + 𝐶(𝑠 + 2) 

Letting s approach −2, B = − 2. To find C we see that if we differentiate above equation 

with respect to s, 

−2

(𝑠 + 1)2
      =       

(𝑠 + 2)𝑠𝐴

(𝑠 + 1)2
+ 𝐶 

C is isolated and can be found if we let s approach −2. Hence, C = − 2. 

𝐹(𝑠)       =       
2

𝑠 + 1
+

−2

(𝑠 + 2)2
+

−2

𝑠 + 2
 

F(s) in Table 2.1; hence, f(t) is the sum of the inverse Laplace 

f (t) = 2e−t − 2te−2t − 2e−2t
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Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.5  F(s) F(s) with complex roots in the denominator is 

 F(s)=
3

𝑠 (𝑠2 + 2𝑠 + 5)
  

SOLUTION: 

This function can be expanded in the following form: 

𝐹(𝑠) =
3

𝑠 (𝑠2  +  2𝑠 +  5)
      =       

𝐴

𝑠
+

𝐵𝑠 + 𝐶

 (𝑠2  +  2𝑠 +  5)
  

A is found in the usual way to be. B and C can be found by first multiplying Eq. by the 

lowest common denominator, s(s2 + 2s + 5), and clearing the fractions. After simplification 

with A = 
3

5
, we obtain 3  =    (  𝐵 +

3

5
 ) 𝑆2 + (  𝐶 +

6

5
 ) 𝑆 + 3 

Balancing coefficients (  𝐵 +
3

5
 ) = 0 and (  𝐶 +

6

5
) = 0 Hence B=

−3

5
 , C=

−6

    5
 Thus 

The last term can be shown to be the sum of the Laplace transforms of an 

exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 

in Table 2.2, we get 

ℒ [Ae−at cos ωt]= 
𝐴(𝑠+𝑎)

(𝑠+𝑎)2+𝑊2
  and ℒ [Be−at sin ωt]= 

𝐵𝑊

(𝑠+𝑎)2+𝑊2
 

Adding two equations above we get 𝐴(𝑠+𝑎)+𝐵𝑊

(𝑠+𝑎)2+𝑊2   ⇒ F(s)= 
3

𝑠 (𝑠2 + 2𝑠 + 5)
=

3

5

𝑠
−

3

5
(𝑠+2)

𝑠2 + 2𝑠 + 5
 

F(s)= 

3

5

𝑠
−

3

5
 

(𝑠+1)+
1

2
2

(𝑠+1)2 + 22
 

f (t) =
3

5
−

3

5
𝑒−𝑡(cos 2𝑡 +

1

2
sin 2𝑡) 


