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Antennas

O ““a usually metallic device (as a rod or wire) for
radiating or receiving radio waves.”

O In other words the antenna is the transitional
structure between free-space and a guiding
device, as shown in Figure 1

L AT-L Thevenin equivalent of the antenna system
of Figure 1 in the transmitting mode is shown in
Figure 2
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Figure 2 Transmission-line Thevenin equivalent of antenna in transmitting mode.
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Figure 1.  Antenna as a transition device.
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O Where the source is represented by an ideal generator, the transmission line is represented by a line with
characteristic impedance Ze, and the antenna is represented by a load Za4 [Zs = (R, +R)+ jXu]

connected to the transmission line.

O The load resistance A: .....the conduction and dielectric losses associated with the antenna structure
Rr........the radiation resistance, 1s used to represent radiation by the antenna.

O The reactance X4 is used to represent the imaginary part of the impedance associated with radiation by the antenna.
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Figure .3 Wire antenna confipurations.
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2) Aperture Antennas

= Used in higher frequencies.

= Antennas of this type are very useful
for aircraft and spacecraft
applications, because they can be
very conveniently flush-mounted on
the skin of the aircraft or spacecraft.

Covered with a dielectric material to
protect them from  hazardous
conditions of the environment.
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(b) Conical horn

(c) Rectangular waveguide

Figure * 4 Aperture antenna configurations.




3) Microstrip Antennas

The microstrip antennas are low profile,
conformable to planar and nonplanar
surfaces, simple and inexpensive to
fabricate using modern printed-circuit
technology,

Mechanically robust when mounted on
rigid surfaces, compatible with MMIC
designs, and very versatile in terms of
resonant frequency, polarization, pattern,
and impedance.
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Figure .5 Rectangular and circular microstrip (patch) antennas.




4) Array Antennas

Many applications require radiation
characteristics that may not be achievable
by a single element. It may, however, be
possible that an aggregate of radiating
elements in an electrical and geometrical
arrangement (an array) will result in the
desired radiation characteristics.

The arrangement of the array may be such
that the radiation from the elements adds
up to give a radiation maximum in a
particular direction or directions, minimum
in others, or otherwise as desired.
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Figure 6 Typical wire, aperture, and microstrip array configurations.
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5) Reflector Antennas

= Used in communicate over great
distances, sophisticated forms of
antennas had to be used in order to
transmit and receive signals that
had to travel millions of miles.

= Antennas of this type have
been built with diameters as
large as 305 m.

* Such large dimensions are
needed to achieve the high
gain required to transmit or
receive signals after millions
of miles of travel.
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6) Lens Antennas —
= Lenses are primarily used to collimate

incident divergent energy to prevent it from ' -

spreading in undesired directions. — -

u BY pl’OpeﬂY Shaping the geometrica]. Convex—plane Convex-convex Conve s=conve
configuration and choosing the () Lens antennas with index ol refraction g = |
appropriate material of the lenses,

they can transform various forms of

divergent energy into plane waves. -
= They can be used in most of the same

applications as are the parabolic

reflectors, especially at higher N

frequencies.

Loncayve=plane Loncive-concave LOncave-conve x

(1 Lens antennas with indes of relmaction o < |

Figure 8 Typical lens antenna configurations. (source: L. V. Blake, Anteanas, Wiley, New
York, 1966).

¢ In summary, an ideal antenna is one that will radiate all the power delivered to it from the transmitter in a
desired direction or directions.
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1-RADIATION PATTERN — glad¥) kaad
An antenna radiation pattern or antenna pattern is defined as “a mathematical function or a graphical
representation of the radiation properties of the antenna as a function of space coordinates.
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2- Power pattern:- A graph of the received power of a constant radius.

P(6,¢) < |F(6,9)I°

3- Field pattern:- A graph of the received electric or magnetic field along a constant radius.

| _ E(6¢)
F(8, ¢) normalized field pattern = E6,9)
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* The radiation property of most concern is the two- or three
dimensional spatial distribution of radiated energy as a function
of the observer’s position along a path or surface of constant
radius. A convenient set of coordinates is shown in Figure 2.1.

* Atrace of the received electric (magnetic) field at a constant
radius 1s called the amplitude field patfern. On the other hand, a
graph of the spatial variation of the power density along a constant
radius 1s called an amplitude power pattern.
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Elevation plane

Figure 2.1

Coordinate system for antenna analysis.




4-Isotropic radiator :- A hypothetical antenna having equal radiation in all direction (point source).

5- Directional antenna :- An antenna having the property of radiating or receiving electromagnetic waves more effectively
In some directions than others.

6-Omni directional antenna:- An antenna having a non directional pattern in azimuth and a directional in elevation.

. . . < vz plane
Azimuth plane ( F(¢) . & = constant ) xz plane
L
elevation plane 6) .¢ = constant , — —
plane ( g(6) .¢ ) 50 6="
-V
xy plane
_
X 9

Radiation Pattern lobes - 2
Figure 15 Coordinate system.

Radiating lobes:- A portion of the radiation pattern bounded by the regions of relatively weak direction intensity.

A major lobe (also called main beam) is defined as “the radiation lobe containing the direction of maximum
radiation.”

Side lobes:- A radiating lobe in any direction other than the intended lobe ( usually side lobes is adjacent to the main lobe).
Back lobe:- A minor lobe that occupies the hemisphere in the direction apposite to that of the major lobe.
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Figure 16 Radiation lobes and beam widths of an antenna pattern Figure 17 Linear plot of power pattern and its associated lobes and beamwidths.
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Field Region

The space surrounding an antenna is usually subdivided into three regions: (a)
reactive near-field, (b) radiating near-field (Fresnel) and (c) far-field

(Fraunhofer) regions as shown in Figure 18.

3
R < 0.62 DT reactive near field region .
2D2 D3 .
P > R = 0.62 N radiating near
5 field region .
2D .
R > —— far field region .

D: The largest dimension of the antenna .
Radiation Power Density 4ssladl) 5 jaal) 4atis

—

T =L R [F@F]
Prad szwav Z‘;
Praa = ff% Re [E X ﬁ*] .ds where ds = r2sin6 d0doa,

— : : w :
W,,: The time average poynting vector — or average power density.
m

P,.,4:The radiated power (watt).
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Figure 18 Field regions of an antenna.



Radiation Intensity glaY) sad

Radiation intensity 1s defined as the power radiated from an antenna per unit solid
angle .

watt
U(E: ‘i’:} — rzwrad

Unit solid angle

The radiation mtensity 1s also related to the far-zone electric field of an antenna by
U |E|?.
U{Hr (i}) — Tzwfﬂd

e, ¢) = T‘E% R, E® ﬁ*] where 7 :%:} H :%
_ 21 p [pE
U6, ¢) =125 R _E”]
2
U, o) = ;—niﬁ(a, )2 where 1 = 1207
Praa = [JU(B,¢) dQ  where dQ) = sinf dOd¢
P _ J‘ J‘ U{:E“ ‘i’) sin@ d@d(ﬁl 1 = intrinsic impedance of the medium

where d{2 = element of solid angle = sin@ df d¢.
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Directivity 4z il -

Directive gain in a given direction is the ratio of the radiation intensity in that
direction to the radiation intensity of a reference antenna (isotropic antenna).

U(e
Dy(0,¢) = 4’”%
u E,C}") max
D, =Dg(8,9)| =4m (Pri
2
00 aiEol”

D,(8,9) = 4””;;;(5,@ - = dn—

)
f E—nwﬂﬁ sinf d8d¢
0

0
2 2 2
_ |Eﬂmux| _ |Eﬁmax| _ zlEﬂmax|
Dy(0,¢) =dm—z =T ~ [F(6)do
ZHf |Eg|” sinb d6 f |Eg|” sinf d6
0 0
_P'.r'ad
Uo = 41

D, (8, ¢): directive gain in a given direction.
U(8, ¢): radiation intensity in a given direction.
U(8, P)|ar: Mmaximum radiation intensity.

U,: radiation intensity of isotropic antenna.

P, .q: radiated power.
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Power Gain

power gain of an antenna in a given direction is
defined as 4 times the ratio of radiation intensity in

that direction to the net power accepted by the antenna
from a connected transmitter.

(e,
(0.6~ 1002
P
Efficiency n = ;Id %
_ 4. U(0,9)
G,(6,¢) = 4pr—dTJ

Gg(8,¢) = Dy(6,¢) 1

Go(0,0) = Gy(8,8)| = D,n

LY
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Half Power Beam Width(HPBW)

Is the angular separation of the points where the main beam of
the power pattern equals one half the maximum value. on the

field pattern these points corresponding to the value % =0.707

Figure 19 Field pattern (in linear scale). Figure 2.0Power pattern (in linear scale) .
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E(6,¢) = 10sinf
0.707(max) = E(0, ¢)
0.707(10) = 10sinf},
sinfy = 0.707

8, = sin~10.707 = 45°
HPBW = 2(90 — 83)
HPBW = 2(9{}'3 — 45‘})
HPBW = 90°

or normalization

E(8, ¢),, = sin0
0.707(max) = E(0, ¢)
0.707(1) = sinfp

sinf@y = 0.707

9, = sin~10.707 = 45°
HPBW = 2(90 — &y,)
HPBW = 2(90° — 459)
HPBW = 90°

-
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—
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Figure 2  Radiation pattern of the antenna .

note: Field — 0.5
power — (0.707
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E(8,¢) = 10cosb
0.707(max) = E(0, ¢)
0.707(1) = cosOy,
cos@, = 0.707

8, = cos 1 0.707 = 45°

HPBW = 2|0 — 84| 47
HPBW = 2|0 — 45°]
HPBW = 90°

Figure 2,
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Radiation pattern of the antenna .
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Figure 1 Two dimensional Figure 12 Two dimensional
power pattern(in dB). power pattern(in linear scale)

uie,¢) = cos3@
0.5(max) = U(H, ¢)
0.5(1) = cos3gy
coséy = o5

6, = cos ' 305 = 37.5°
HPBW = 2|0 — 84|

HPBW = 2|0 — 37.57|
HPBW = 757

] 11 [P TP S

Ficure 2. ' Radiation pattern of the antenna
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Band Width (B.W)

The range of frequency with which the performance of the antenna with respect to some characteristic conforms to a
specified standard .

Input Impedance

. A Antenna
/‘IV . /\/ % E_ﬂ :Rﬂ _I'_j..j[r_‘q
R—r.'_d

RA — RL-L‘-'SE!' + Rrﬂa’

—— 4 L L i
rx R, .. =—=p~ Fordcresistance
. A A
s L o) . .
Vp impedance 7 R, ..= || £ For high frequencies
Figure 2.11 transmmtting Antenna Figure 2.12 Equivalent circuit . 2may 2o

L: length of antenna
a: radins of the antenna .

(= 2F
K= Hrltg

: conductivity of the antenna
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Efficiency Friis Transmission Equation

|
|
|
|
Piy Ry 1 \&;}_ B:) i
RT ad 1 Transmitting antenna ‘
T]' = R iR | (Pe, Gr, Di) R ~|  Receiver antenna
rad TR Loss I (Pr . Gr, Dr)
U(H,ii?]l | Figure 2.13 Geometrical orientation of transmitting and receiving
Gg (HJ ¢j =4 P ; I | antennas for Friis transmission equation
TR
|
G,(0.9) =D,(6,0)1 = G,(6,9)=G,(6.¢)] =D Disecion of popagation
max I & of wave .
_ be {H’¢]|mﬂx I \ /
J};r Dg I Pin =Pt + PLoss —= Pin =Prad + PLoss
| » R -
|
| Transmithing Recerver
| antenna antenmna
|
|

Figure 2.14 Two antennas separated by a distance R _
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Example 2.1 The radiated power density of an antenna 15 given by:
—  Apsinfo  w
av — “.I"Z (Ly E
Determine: 1-The total radiated power.
2-radiation intensity.
3-Durectivity.

The solution:- P, 4z = Ifwﬂ" .ds |, ds = r2sind [‘IE’{'IQEHIF

T
Ap 5ind . .
1-P._; = f f ﬂsm a,. .r°sind dedod, = ER‘HGJ;] sin®@ = 24, watt
2-U(8, ) = W,
U, ¢) =r2 A”:EI“E = A, sin8
U(6,¢)|max A, 4m
* e = TUEg) a0 T T g sinf sind dfdp znrfﬁsmza de
j{} [g Aosing sin b 0
D, = ;—Hﬁ — % =127
i)
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Example 2.2 The radiated power density of an antenna 1s g1ven by:

W—3 . ﬂﬂ Sfﬂzﬂﬁ W
rad TE T T]‘IE

Determine: 1-The total radiated power.
2- radiation intensity.

— 4
3-Directivity. mnote: _,r ;T sin@ = 3

- —3 —
The solution:- P ; = JIW“ .ds

T
Ap sin’6 - : - : 8
1-P. .z = f f Losin b e W, .1r%sind dodod, = zmalﬂJ‘ sin’g = —ﬁ,ﬂlﬂwatt

0 3
2-U(8, $) = 1
.2
U, ¢) = 1'3$ — 4_sin’6
3- D, = 4w = 47 =
-”UH‘M o 2m ETI'J’ sin’0 df
f f A,sin”8 sinb dfde
4 3
Dﬂ - 2ﬂ4—5= 1.5
3
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Example 2.3 An antenna has a field pattern given by E(8) = cos® cos20 for

0 <8 < 90° Find HPBW .
The solution:- 0.707(max) = cosf cos28
0.707(1) = cos8 cos28

g, _ 0707
Costn = coslg
_ 0.707
- 1
&, = cos cﬂszﬂ)
&, = 20.5°

HPBW= 2 x 20.5° = 417

Example 2.4 The radiation mntensity of an antenna 1s represented by:

U(8) = cos®8 cos?38 for 0 < 6 < 90° Find HPBW .

The solution:- 0.5{max) = cos°6 cos*38
0.5 = cos”8 cos*30
0.707 = cos8 cos30

cosB, = 0.707
h cos3g
. -1 D.?ﬂ?)
Eh — cos (casEE
E'h = 14.375"°

HPBW= 2 X 14.375" = 28.75°
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g

E(8)

0
30°
45°
60°
20"

1
0.75
0.5
0.25
0

E(®)

30°
45%
60"
90"

1
0.75
0.5
0.25
0
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