Properties of Continuous -time Fourier series:

Properties are important features of transform. They make the transform easier to work with, and thus extend the transform’s
utility. Since transform all do the same thing (i.e. decompose a general signal into a linear combination of basic signals),
properties for different transforms are often similar. So learning a set of properties for one transform directly contributes to
understanding and employing other transforms.

Symmetry: For real-valued periodic x(z), with FS coefficients a;, we have that

g =

That 1s, the CT FS coefficients are symmetric

Linearity: Consider two signals, x;(t) and x,(t), each periodic with period 7', with CTFS coefficients a;;, ax;
respectively. Given any two constants ¢; and c,, the CTFS pair is

c1 71(t) + coxa(t) (o € .y + C2 Gy

Time Shift (i.e. Delay): Given a signal x(¢), periodic with period 7', with CTFS coefficients a;, then for any delay 7, x( — 7)
is also periodic with period T with CTFS pair

r(t=7) . g I

(.
Note that here the magnitude of the series coefficients are not changed, only their phases.
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Discrete Time Fourier Series (DTFS)

The discrete Fourier series representation of a periodic sequence x/n/ with fundamental period N, (N, 1s the number of data points
in the data set) is given by

Np-1
o 27t
— n -
x[n] = ; C, e N,

where C;, are the Fourier coefficients and given by
Np-1
1 —7kQOn
Cy = N x[n]e™
0 %=0

The DTFS coefficients C; are called frequency-domain representation for x/n/ since each coefficient is associated with a
complex sinusoid of a different frequency. Setting k = 0,

which indicates that ¢, equals the average value of x/n] over a period. The Fourier coefficients C; are often referred to as the
spectral coefficients of x/n/. The Fourier series coefficients Cj, are periodic with fundamental period V.

Ck+N0 = Ck
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DTFS

Example: Determine the DTFS for the following signal x["lij]
Solution H0.5
The signal has a period N = 5, hence Q, =2/ 5. Also the signal has odd T X T - T o T hq
symmetry, hence we can sum over n=-2 to n =2 in Eq. below to get —6 T -2 ¢ l 2 4 l o h
-0.5
N0—1 2 9
1 ; 1 —jk=T
Cr=— x[n]e 7, == x[n] e 5
Ny 4= 5 &
n=0 n=-2

= %{X[—Z]eﬁxk/i s x[—l]eflfkfs + x[()] el + x[l]e-jz;rkff' + x[z]e-ﬁ.—m;ﬁ}
Substituting for x/n/ from above Fig., we get

Cp = l{[] L gimis 1o -%e'""z”kfs + [}}

51 2
= 1 1+ l P e L l o2k
510 2 2
= % {1+ jsin(27k/5))

From this equation, one period of the DTFS coefficients ¢, for k =-2 to k=2 are
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DTFS- Example
c_p =c[2]= é{l — jsin(4z/5)} = 0.2 - j0.1176 = 0.232£ - 0.5315 rad

c_1= c[-1]= %{1 — jsin(27/5)} =0.2 - j0.1902 = 0.276 £ — 0.76 rad

Co =c[0] = é{l — jsin(0)} = 0.2 = 0.2£0rad

c[k]

—10.3

c1=c:[1]=1{1+jsin(2;rjs]}=0.2+_,f{}.1902=0.27610.?6md o o o | o o o 9
5 Qo oo o o o 0

o =10 A ) e

c=c[2]= é{l+jsi11(4:r/5)} =0.2+ j0.1176 = 0.232.£0.5315rad
—0.1}
8 6 -4 2 0 2 4 6 8 10 °Fk

Hence, the magnitude and phase spectrums of C;. are as shown

B

—0
1]
—0
—

{I_‘_‘ [k]} (radians)

L

ﬁ 1o rk

:Iﬂ a
0—
q
——0
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s
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=
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DTFS

Example Determine the Fourier coefficients for the periodic sequence x/n/ shown in Figure

No-1

Solution: C. = 1 x[n]e 7k ] ]

0 n=0

From Fig. we see that I[H] is the periodic extension of {0, 1,2, 3} with funuaincoar
period N, = 4. Thus,

4320012 345 67 n

2m _ |
S and e Mo = p—ilm/A _ mim/2 —j

ﬂ[] 4 3

the discrete-time Fourier coefficients ¢, are Cx ~a x[n] (=)
n=0

lﬁ 1ﬂ123 :
Co = A :x[”}=zf+ + +)=§

1 1

——Ex[ﬂ]{—ﬂ 7(0-1-2+j3) = - +j
.ﬂ=-l'..‘r

- wag 1 B 1
gxln}(—:) - (0-1+2-3)=

-hl

- 1 11
g x[n]'(—af)h“E[[}+jl~2+j3)= =

.p-|-~

Note that ¢ =¢ ot EE313 - Analog Communication Systems | 50
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DTFS- Example

Example Consider a sequence x{n

x[n]= ), 8[n-— 4k] !
K = — a0
(a) Sketch x[n].

(b) Find the Fourier coefficients ¢, of x[n). S &5 TDES s N6y d

(a)
Soluation

(a) The sequence x[n] is sketched in Fig. It is seen that x[n] is the periodic extension
of the sequence {1,0,0,0} with period N, = 4,

3 L
(b) x[n]= ¥ ¢, e*@rsom o ¥ o pikr /2
.l.'-ﬂ .i""ﬂ
12 1 1
and == ) x[n)e*Cm/m o _x[0] = - all k
3 = 4 4

since x[1] = x[2] = x[3] = 0. The Fourier coefficients of x[n] are sketched

|t-'*t

51
k ..
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Properties of discrete Fourier series

Periodicity of Fourier Coefficients: The Fourier series coefficients ¢, are periodic with fundamental period N,.

Crng = Cr

Symmetry or Duality: Symmetry property of the discrete Fourier series 1s given by

x[n] &5, = c[k] c[n] 255 — x[—k]
Even and Odd Sequences:

When x[n] is real, let
x[n] =x [n] +x,[n]
where x [n] and x [n] are the even and odd components of x[n], respectively. Let
DFS
x[n] ¢,
Then
‘rr[ﬂ] EE} Re[cl’]
DFS. .
x,[n] <= Im[c,]
Thus, we see that if x[n] is real and even, then its Fourier coefficients are real, while if
x[n] is real and odd, its Fourier coefficients are imaginary.

Other Properties: When x/n] is real, then it follows that

C_,=C =Cy
-k No—k K EE313 - Analog Communication Systems | 52



Parseval's Theorem: DTFS

If x/n] 1s represented by the discrete Fourier series, then it can be shown that

R ST L

ND n=1{Ny) k=1{Ny’

which is called Parseval's identity (or Parseval’s theorem) for the discrete Fourier series.

Example The discrete-time Fourier representation of a periodic signal z[»] = {1,1,0,0} with
period N = 4 is given by,

3

Cp. = E Z.‘E[n]&dj?ﬂmﬂ = E(l : o E’_‘ﬁﬂh M) ka=()1. 2.3
n=0

This gives the coefficients

| 1 : 1 ;
c[}zi; C1=i(1—_?); co = 0; c;;"-:i(l—I—j)
No-1 No-1
1 1
— ) |x[nll*= ) |C* =3
N 2
On—O n=0

Note that |a =+ ]bl = \/ (12 + b2 EE313 - Analog Communication Systems | 53



Fourier Transform (FT)

The Fourier transform 1s used for mapping between the frequency and time domains. The Fourier transform is a major tool in
system analysis and consequently in simulation of systems.

From Fourier Series to Fourier Transform:

Fourier series is for periodic signals. Fourier transform is for non-periodic signals. Let x(#) be a nonperiodic signal of finite
duration, that is, ,
x(1)=0 t[>T,

Such a signal is shown in Figure a .Let x7(?) be a periodic signal formed by repeating x(?) with fundamental period T; as shown
in Figure b.

ITH{;,
A B A L A q: A 1 A >
Ty L 1,07, T T

(k)
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From Fourier Series to Fourier Transform:

gt
3

A RARENA A RARA (AN RARARENAS

T-C(ney)
A

10

0.8

0.6

04

0.2

: s . : « : e
| -30 | -20 11 ro 20 I 30 e

—-02F

When the period of x;(¢) approaches infinity, the periodic signal x7(¢) becomes a non-periodic signal x(¢) and the following will result:
1- Interval between two neighbouring frequency components becomes zero: T' — oo = wy = 27/T — 0
2- Discrete frequency becomes continuous frequency  kwply,—o = w

3- Summation of the Fourier expansion becomes an integral:
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Fourier Transform

In summary, the Fourier transform of x(#) can be written as

X(w) = F{x (1)} :f x (t) e 7@t dt

The inverse Fourier transform of X(w) is denoted by

x(t) = F H{X(w)} :%j X(w) e’ dw

Forward FT
Time [ x(Oye—Totde Frequency
Domain / % \ Domain

x(t) X(w)

\
5 | X@leotda
-0
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Fourier Transform

Example: find FT for x(?)= o(?) 1) 0
Solution: X(w):fiooo x(t) e ot Ji= fiooo 5(t) e J0t dt = eTI@ (0)=1 ‘ c>

> >

4 (0

x(r)

Example: Find the FT of x(#) =e™ u(¢). plot the magnitude and phase spectrum.

Solution: let us find the FT of x(f) =e™ u(f) for a> 0, \
¥

' !
X W) =gy “u(tye ™ dr 0
0
¥ 1 ¥ 1 arg{ X ()|
:(‘y' (a+jW)fdt — e-(a+jw)t _ pﬂ
0 a+ jw 0 a+ jw L
2 - 0 ;:; 2n !
Converting to polar form, we find that the magnitude and phase of X(w) Ll
are respectively given by -p12-
argl X(w)
1 .
‘X<W) = and arg{X(W)} =- tan-ng_VQ: pr2
(az +w2 eag ————Lpn
2 o 0 (:l 2n !
—plat———
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Fourier Transform

Example: Determine the continuous-time signal x(?) if its magnitude and phase spectra are shown below

| X (@) ZX (w)
. x/2
Solution
=5 0 3 > a) (rad/sec) =3 0 2 . w (rad/sec)
The Fourier transform X(m) is expressed mathematically as:
-2
7, —2<w<(
X(w)=4¢ e77, 0<w<?2
0, otherwise
Using the inverse Fourier transform, the continuous-time function can be found as:
Since:
O . 1 ¥ Ty
z(t) = - X(w) & dw = — f e/ 2el dw +f e 726l dw i
:ZTT i Qﬁ' —92 0 " g 2- —3
0 2 e _j
1 | . 1 . .
T _C_jlu.,l!, - _D;l;.ut - [l iz E—_}Et - e}?t A l]
2m | t P - 3 2rt
1

‘ == — (08
o [2 = 2cos(2t)] = — [1 - cos(21)}
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Properties of the Continuous-time Fourier transform

Basic properties of the Fourier transform are presented in the following.

Linearity: a,x,(t) +a,x,(t)e—a, X, (w)+a,X,(w)

Time Shifting: x(t —t,) > e " X(w)

Frequency Shifting: | € looty (1) = X(w— wy)

The multiplication of x(¢) by a complex exponential signal e’ is sometimes called
complex modulation. Thus, Eq. above shows that complex modulation in the time domain
corresponds to a shift of X(w) in the frequency domain. Note that the frequency-shifting
property Eq.above is the dual of the time-shifting property

1 )
Time Scaling: x(at) «— E_IX( .;.]

where a is a real constant. This property follows directly from the definition of the Fourier
transform. Equation above indicates that scaling the time variable t by the factor a causes
an inverse scaling of the frequency variable @ by 1/a, as well as an amplitude scaling of
X(w/a) by 1/|al. Thus, the scaling property above implies that time compression of a
signal (a > 1) results in its spectral expansion and that time expansion of the signal (a < 1)
results in its spectral compression.

Time Reversal: x(—t)—=X(—w)

Thus, time reversal of x(t) produces a like reversal of the freauencv axis for X(w).

This property is readily obtained by setting a = —1 in time scaling Eq.
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Properties of the Continuous-time Fourier transform

Duality (or Symmetry): X(t) = 2mx(—w)
The duality property of the Fourier transform has significant implications. This property allows us to obtain both of these dual
Fourier transform pairs from one evaluation of Eq. below

s

Differentiation in the Time Domain: _d!x{r} — jwX(w) X(w)= ;;f;r{_x(;]} i f x(t)e ™ dt

dt —

This shows that the effect of differentiation in the time domain 1s the multiplication of X(®) by jw in the frequency domain.

Differentiation in the Frequency Domain: which is the dual property of differentiation in the time domain:

dX(w) or F{t x(t)} :jdiX(a))
dw @

1
I
Integration in the Time Domain: f_ x(7)dr — 7 X(0)é(w) + EX{M}

Since integration the inverse of differentiation, this Eq. shows that the frequency-
domain operation corresponding to time-domain integration is multiplication by 1 /jw, but
an additional term is needed to account for a possible dc component in the integrator
output. Hence, unless X(0) = 0, a dc component is produced by the integrator

Convolution: (1) * x,(r) <= X (@) X,()
Equation above is referred to as the time convolution theorem, and it states that convolution in the time domain becomes

multiplication in the frequency domain.
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