PROBLEM.29: A can C, having a mass of 0.5 kg, moves along a grooved horizontal slot shown in Fig.1–21a. The slot is in the form of a spiral, which is defined by the equation $r = (0.1\theta)$ m, where θ is in radians. If the arm OA rotates with a constant rate $\dot{\theta} = 4$ rad/s in the horizontal plane, determine the force it exerts

on the can at the instant $\theta = \pi$ rad. Neglect friction and the size of the can.

SOLUTION

Free-Body Diagram. The driving force \mathbf{F}_{c} acts perpendicular to the arm OA, whereas the normal force of the wall of the slot on the can, \mathbf{N}_{c} , acts perpendicular to the tangent to the curve at $\theta = p$ rad, Fig. 1-21b. As usual, \mathbf{a}_{r} and \mathbf{a}_{θ} are assumed to act in the positive directions of r and u, respectively. Since the path is specified, the angle c, which the extended radial line r makes with the tangent, Fig. 1-21c, can be determined from Eq. 1-10. We have $r = 0.1 \theta$, so that $dr/d\theta = 0.1$, and therefore

 $\tan \psi = \frac{r}{dr/d\theta} = \frac{0.1\theta}{0.1} = \theta$ rad

When $\theta = \pi$, $\psi = \tan^{-1} \theta = \tan^{-1} \pi = 72.3^{\circ}$

, so that ϕ = 90 - ψ = 17.7°, as shown in Fig. 1–21c. Identify the four unknowns in Fig. 1-21b

1

Equations of Motion. Using ϕ = 17.7 and the data shown in

Fig. 1–21b, we have

$$\begin{pmatrix} \rightarrow \\ + \end{pmatrix}$$
 $\Sigma F_r = ma_r; N_C \cos 17.7 = 0.5 a_r$

Lecturer Dr.Hameed Alsaadon

 $(+\downarrow) \sum F_{\theta} = ma_{\theta}; F_{C d} - N_{C} \sin 17.7 = 0.5a_{\theta}$

2

Kinematics. The time derivatives of r and $\boldsymbol{\theta}$ are

$$\dot{\theta}$$
= 4 rad/s \Rightarrow $\ddot{\theta}$ = 0 , r = 0.1 θ \Rightarrow \dot{r} = 0.1 $\dot{\theta}$ = 0.1(4)= 0.4 \Rightarrow \ddot{r} =0.1 $\ddot{\theta}$ = 0

$$a_r = \ddot{r} - r \dot{\theta}^2 = 0 - 0.1\pi (4)^2 = -5.03 \text{ m/s}^2$$
, $a_\theta = r\ddot{\theta} + 2\dot{r} \dot{\theta} = 0 + 2(0.4)(4) = 3.20 \text{ m/s}^2$

Substituting these results into Eqs. 1 and 2 and solving yields

 N_{C} = -2.64 N, F_{C} = 0.800 N, What does the negative sign for N_{C} indicate?

PROBLEM.30: The forked rod is used to move the smooth 2-lb particle around the horizontal path in the shape of a limaçon, $r = (2 + \cos \theta)$ ft if $\theta = (0.5t^2)$ rad, where *t* is in seconds, determine the force which the rod exerts on the particle at the instant t= 1. The fork and path contact the particle on only one side.

SOLUTION

r = 2 + cosθ ⇒ ṙ = -sinθ.ė́, θ= 0.5t² ⇒ θ̇ =t ⇒ θ̇ = 1
ṙ = -sinθ.ė́-ė́cosθ
At t=1, θ= 0.5(1)² =0.5 rad and ė̈ = 1 rad/s²
r = 2 + cos 0.5 = 2.8776 ft
ṙ = -sin 0.5(1) = -0.4974 ft/s²
r̈ = -cos 0.5(1)² - sin 0.5.(1) = -1.357 ft/s²
a_r = r̈ - rė́ = -1.375 - 2.8776(1)² = -4.2346 ft/s²
a_θ = rė̈ + 2ṙ ė̇ = 2.8776(1) + 2(-0.4794)(1) = 1.9187 ft/s²
tanψ =
$$\frac{r}{dr/d\theta} = \frac{2+cos(0.5)}{-sin(0.5)} = -6.002 rad ⇒ ψ=tan^{-1}(-6.002) = 80.54^{0}$$
, θ=
90-ψ= 9.46⁰
(+ス) ∑ F_r=m a_r ⇒ -N cosθ=m.a_r ⇒-Ncos(9.46⁰) =(2/32.2)(-4.2346)⇒ N =
0.2666 lb

F $\psi = 80.54^{\circ}$

Lecturer Dr.Hameed Alsaadon

Α

(+[^]) ΣF_θ=m a_θ ⇒ F-Nsinθ=m.a_θ ⇒ F-0.2666 sin(9.46⁰)=(2/32.2)(1.9187), F= 0.163 lb

PROBLEM.31: The spring-held follower AB has a mass of 0.5 kg and moves back and forth as its end rolls on the contoured surface of the cam, where r = 0.15 m and $z = (0.02 \cos 2\theta)$ m. If the cam is rotating at a constant rate of 30 rad/s, determine the

force component Fz at the end A of the follower when θ = 30°. The spring is uncompressed when θ = 0°. Neglect friction at the bearing C.

Solution

Kinematics. Using the chain rule, the first and second time derivatives of z are

 $Z = (0.02 \cos 2\theta) \text{ m} \Rightarrow \dot{Z} = 0.02[-\sin 2\theta. 2\dot{\theta} = -0.04 \sin 2\theta.\dot{\theta} \text{ m/s} =$ $\ddot{Z} = -0.04 [\sin 2\theta.\ddot{\theta} + \dot{\theta} (2\cos 2\theta.\dot{\theta})] = -0.04\sin 2\theta.\ddot{\theta} - 0.08 \cos 2\theta.\dot{\theta}^2 \text{ m/s}^2$ $Here \ddot{Z} = 30^0, \dot{\theta} = 30 \text{ rad/s}, \ddot{\theta} = 0$ $\ddot{Z} = -0.08 \sin 2(30). (30)^2 = -36 \text{ m/s}^2, a_z = \ddot{Z} = -36 \text{ m/s}^2$ $x = 0.02 \cos 2(30) + 0.02 \cos 2(0) = 0.03$

Equation of Motion.

 $(\stackrel{\frown}{+})$ ∑ F_z = ma_z ⇒ Referring to the FBD of the follower, Fig. *a*, F_{SP} = Kx =1000(0.03) ΣFz = maz; N - F_{SP} = ma_z ⇒ N - 30 = 0.5(-36.0) ⇒ N = 12.0 N

PROBLEM.32: A smooth can C, having a mass of 3 kg, is lifted from a feed at A to a ramp at B by a rotating rod. If the rod maintains a constant angular velocity of $\dot{\theta}$ = 0.5 rad/s, determine the force which the rod exerts on the can at the instant θ = 30. Neglect the effects of friction in the calculation and the size of the can so that r = (1.2 cos θ) m. The ramp from A to B is circular, having a radius of 600 mm.

SOLUTION

r = 2(0.6 cosθ) = 1.2 cos θ ⇒
$$\dot{r}$$
 = -1.2 sin θ. θ
 \ddot{r} = -1.2(sinθ. $\ddot{\theta}$ +cos θ. $\dot{\theta}^2$)
At θ = 30⁰, $\dot{\theta}$ = 0.5 rad/s, $\ddot{\theta}$ = 0
r = 1.2 cos 30° = 1.0392 m, \dot{r} = -1.2 sin 30°(0.5) = -0.3 m/s
 \ddot{r} = -1.2 cos 30°(0.5)² - 1.2 sin 30°(0) = -0.2598 m/s²
a_r = \ddot{r} + r $\dot{\theta}^2$ = (-0.2598)²- 1.0392(0.5) = -0.5196 m/s²
a_θ = r $\ddot{\theta}$ + 2 \dot{r} $\dot{\theta}$ = 2(-0.3)(0.5) = -0.3 m/s²
(+ $\vec{\lambda}$) \sum Fr = ma_r; N sin θ - mg sin θ = ma_r
N SIN 30 -3(9.81) SIN 30 = 3(-0.5196)
N = 15.5 N
(+ $\vec{\lambda}$) \sum Fθ = m a_θ ⇒ F - mg cos θ + N cosθ = maθ

F - 3(9.81)cos 30 + 15.5 cos 30 = 3(-0.3) ⇒F= 16.665 N

Differentiation of Trigonometric Function

$\frac{d}{dx}(sinx) = cosx$	$\frac{d}{dx}(tanx) = sec^2x$	$\frac{d}{dx}(secx) = secx.tanx$
$\frac{\mathrm{d}}{\mathrm{dx}}(\cos x) = -\sin x$	$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{cotx}) = -\mathrm{csc}^2 \mathrm{x}$	$\frac{d}{dx}(\csc x) = -\csc x.\cot x$

PROBLEM.33: The pilot of the airplane executes a vertical loop which in part follows the path of a cardioid, $r = 200(1 + \cos\theta)$ m, where θ is in radians. If his speed at A is a constant, $v_p = 85$ m/s, determine the vertical reaction the seat of the plane exerts on the pilot when the plane is at A. He has a mass of 80 kg. Hint: to determine the time derivatives necessary to calculate the acceleration components ar and a, take the first and second time derivatives of $r = 200(1 + \cos\theta)$. Then, for further information.

Solution

Kinematic. Using the chain rule, the first and second time derivatives of r are. $r = 200(1 + \cos \theta) \Rightarrow \dot{r} = -200\sin\theta. \dot{\theta}$ \ddot{r} = -200[sin θ . $\ddot{\theta}$ + $\dot{\theta}$. cos θ . $\dot{\theta}$ = -200 sin θ . $\ddot{\theta}$ -200 cos θ . θ^{2} When $\theta = 0^{\circ}$; r = 200(1 + cos 0°) = 400 m \dot{r} = -200(sin0°) $\dot{\theta}$ = 0 $\ddot{r} = -200[\sin 0^{\circ}.\ddot{\theta} + 200\cos 0^{\circ}.\theta^{\cdot 2}] = -200\dot{\theta}^{2}$ Using Eq. V = $\sqrt{\dot{r}^2 + (r\dot{\theta})^2}$ $V^2 = \dot{r}^2 + (r\dot{\theta})^2 \Rightarrow 85^2 = 0 + (400\dot{\theta})^2 \Rightarrow \dot{\theta} = 0.2125 \text{ rad/s}$ mar mg Thus.

 $a_r = \ddot{r} - r\theta^{-2} - 200(0.21252) - 400(0.21252) = -27.09 \text{ m/s}^2$

Equation of Motion. Referring to the FBD of the pilot, Fig. a,

(+↓) ΣF_r = ma_r; 80(9.81) - N = 80(-27.09) \Rightarrow N = 2952.3 N = 2.95 kN

Lecturer Dr. Hameed Alsaadon

 $= 200 (1 + \cos \theta) m$

►θ

A

HOMEWORK: Do as required for solution of questions fellow

Q1. The spring-held follower AB has a weight of 0.75 lb and moves back and forth as its end rolls on the contoured surface of the cam, where r = 0.2 ft and $z = (0.1 \sin 2\theta)$ ft. If the cam is rotating at a constant rate of 6 rad/s, determine the force at the end A of the follower when $\theta = 45$. In this position the spring is compressed 0.4 ft. Neglect friction at the bearing C

Q2. Rod OA rotates counterclockwise with a constant angular velocity of θ = 5 rad/s. The double collar B is pin connected together such that one collar slides over the rotating rod and the other slides over the horizontal curved rod, of which the shape is described by the equation r = 1.5(2 - cos θ) ft. If both collars weigh 0.75 lb, determine the normal force which the curved rod exerts on one collar at the instant θ = 120. Neglect friction.

Q3. The boy of mass 40 kg is sliding down the spiral slide at a constant speed such that his position, measured from the top of the chute, has components r = 1.5 m, $\theta = (0.7t)$ rad, and z = (-0.5t) m, where t is in seconds. Determine the components of force **F**r, **F**u, and **F**z which the slide exerts on him at the instant t = 2 s. Neglect the size of the boy.

Q4. Determine the constant angular velocity $\dot{\theta}$ of the vertical shaft of the amusement ride if $\emptyset = 45$. Neglect the mass of the cables and the size of the passengers.

Q5. The 0.2-kg pin P is constrained to move in the smooth curved slot, which is defined by the lemniscate $r = (0.6 \cos \theta)$ 2θ) m. Its motion is controlled by the rotation of the slotted arm OA, which has a constant clockwise angular velocity of $\dot{\theta}$ = -3 rad/s. Determine the force arm OA exerts on the pin P when θ = 0. Motion is in the vertical plane

Q6. The 0.2-kg ball is blown through the smooth vertical circular tube whose shape is defined by $r=(0.6 \sin\theta)m$, where u is in radians. If $\theta = (\pi t^2)$ rad, where t is in seconds, determine the magnitude of force **F** exerted by the blower on the ball when t = 0.5 s.

Q7. The 2-Mg car is traveling along the curved road described by r = $(50e^{2\theta})$ m, where θ is in radians. If a camera is located at A and it rotates with an angular velocity of $\dot{\theta}$ = 0.05 rad/s and an angular acceleration of $\ddot{\theta}$ = 0.01 rad/s² at the instant $\theta = \pi/6$ rad, determine the resultant friction force developed between the tires and the road at this instant.

 $r = (0.6 \cos 2\theta) \,\mathrm{m}$

